Hugo de Garis – Singularity Skepticism (Produced by Adam Ford)

This is Hugo de Garis talking about why people tend to react with a great deal of skepticism.  To address the skeptics, de Garis explains Moore’s Law and goes into it’s many implications.  Hugo de Garis makes a statement toward the end about how people will begin to come around when they begin to see their household electronics getting smarter and smarter.

Runtime: 12:31

This video can also be found here and here.

Video Info:

Published on Jul 31, 2012

Hugo de Garis speaks about why people are skeptical about the possibility of machine intelligence, and also reasons for believing machine intelligence is possible, and quite probably will be an issue that we will need to face in the coming decades.

If the brain guys can copy how the brain functions closely enough…we will arrive at a machine based on neuroscience ideas and that machine will be intelligent and conscious



Sean O’Heigeartaigh – Interview at Oxford Future of Humanity Institute (on Artificial Intelligence)

Here is a video interview with Sean O’Heigeartaigh.  O’Heigeartaigh speaks on the ethics of artificial intelligence, the technological singularity, augmented reality… he covers a lot of ground.  The video is called Sean O’Heigeartaigh – Interview at Oxford Future of Humanity Institute and it’s worth the watch.


Runtime: 47:01

This video can also be found at 

Video Info:

Published on Jan 24, 2013

Dr Sean O hEigeartaigh
James Martin Academic Project Manager with the Oxford Martin Programme on the Impacts of Future Technology

Seán has a background in genetics, having recently finished his phD in molecular evolution in Trinity College Dublin where he focused on programmed ribosomal frameshifting and comparative genomic approaches to improve genome annotation. He is also the cofounder of a successful voluntary arts organisation in Ireland that now runs popular monthly events and an annual outdoor festival.

The Future of Humanity Institute is the leading research centre looking at big-picture questions for human civilization. The last few centuries have seen tremendous change, and this century might transform the human condition in even more fundamental ways. Using the tools of mathematics, philosophy, and science, we explore the risks and opportunities that will arise from technological change, weigh ethical dilemmas, and evaluate global priorities. Our goal is to clarify the choices that will shape humanity’s long-term future.

the Future of Humanity Institute:

PostHuman: An Introduction to Transhumanism from the British Institute of Posthuman Studies

This video by the British Institute of Posthuman Studies explores three factors of transhumanism; super longevity, super intelligence, and super well-being.  Its called PostHuman: An Introduction to Transhumanism and it’s a great video to show your friends who have never heard of transhumanism or the technological singularity.  

Runtime: 11:11

This video can also be found at

Video Info:

Published on Nov 5, 2013

We investigate three dominant areas of transhumanism: super longevity, super intelligence and super wellbeing, and briefly cover the ideas of thinkers Aubrey de Grey, Ray Kurzweil and David Pearce.

Official Website:

Written by: Peter Brietbart and Marco Vega
Animation & Design Lead: Many Artists Who Do One Thing (Mihai Badic)
Animation Script: Mihai Badic and Peter Brietbart
Narrated by: Holly Hagan-Walker
Music and SFX: Steven Gamble
Design Assistant: Melita Pupsaite
Additional Animation: Nicholas Temple
Other Contributors: Callum Round, Asifuzzaman Ahmed, Steffan Dafydd, Ben Kokolas, Cristopher Rosales
Special Thanks: David Pearce, Dino Kazamia, Ana Sandoiu, Dave Gamble, Tom Davis, Aidan Walker, Hani Abusamra, Keita Lynch


The coming transhuman era: Jason Sosa at TEDxGrandRapids [Transhumanism]

Dawn of Giants Favorite…

This video from TEDx Grand Rapids is probably one of the best introductions to transhumanism. The video is called The coming transhuman era: Jason Sosa at TEDxGrandRapids. Jason Sosa is a tech entrepreneur and I think it’s pretty safe to say that we’ll be hearing more about him in the near future. This one is an absolute must see!

Runtime: 15:37

This video can also be found at

Video Info:

Published on Jun 24, 2014

Sosa is the founder and CEO of IMRSV, a computer vision and artificial intelligence company and was named one of “10 Startups to Watch in NYC” by Time Inc., and one of “25 Hot and New Startups to Watch in NYC” by Business Insider. He has been featured by Forbes, CNN, New York Times, Fast Company, Bloomberg and Business Insider, among others.

In the spirit of ideas worth spreading, TEDx is a program of local, self-organized events that bring people together to share a TED-like experience. At a TEDx event, TEDTalks video and live speakers combine to spark deep discussion and connection in a small group. These local, self-organized events are branded TEDx, where x = independently organized TED event. The TED Conference provides general guidance for the TEDx program, but individual TEDx events are self-organized.* (*Subject to certain rules and regulations)

Ray Kurzweil – How to Create a Mind

This is one of the longer presentations I’ve seen by Ray Kurzweil.  In the video, Kurzweil discusses some of the concepts behind his latest book, How to Create a Mind.  This talk covers a lot of ground; everywhere from the Kurzweil’s Law (Law of Accelerating Returns), merging with technology, pattern recognizing technology, the effects of economy on life expectancy, solar energy, medical technology, education…  Well, you get the picture.  Check it out.

Runtime: 1:01:00

This video can also be found at

Video info:

Published on Jun 17, 2014



Felix Schurmann Talks About Blue Brain and the Human Brain Project at USI

In this video, Felix Schurmann explains the Blue Brain Project and the Human Brain Project.  This is a good introduction to the BBP/HBP, if you are unfamiliar with the projects.  Schurmann discusses the need for the research into brain simulation, gives an overview of some of the current research in cognitive science and computer brain modeling, makes a couple predictions about the future of computational cognitive science and brain simulation, and discusses the convergence of cognitive science and computation.  

Runtime: 54:54

This video can also be found at

Video Info:

Published on Jun 20, 2014

Understanding the human brain is one of the greatest challenges of the 21st century. Today, for the first time, modern ICT has brought these goals within sight: Many areas of science and engineering have adopted simulation-based research as a novel tool for discovery and insight. The sustained performance growth in supercomputer performance allows ever more detailed models, which makes supercomputing nowadays also a viable tool for biology. The Swiss Blue Brain Project has been pioneering the use of supercomputers for detailed, integrative brain tissue modeling since 2005. This success paved the ground for the Human Brain Project, an EU FET Flagship project with more than 100 European and international research institutes. The goal of the HBP is to use ICT as a catalyst for a global collaborative effort to understand the human brain, its diseases and to derive novel computing technologies.
Information and subscription on

Follow USI on Twitter:
Follow USI on LinkedIn:
Subscribe to our channel:

More information on OCTO Technology: – Ray Kurzweil: The Exponential Mind

Chris Raymond at interview Ray Kurzweil.  The article is called Ray Kurzweil: The Exponential Mind.  It follows the usual Kurzwelian interview parameters (a little background, explain exponential growth with examples, discuss where technology is taking us), but it also goes into some of the things his critics have to say and talks a bit about Kurzweil’s new role at Google.  


Ray Kurzweil: The Exponential Mind

The inventor, scientist, author, futurist and director of engineering at Google aims to help mankind devise a better world by keeping tabs on technology, consumer behavior and more.

Chris Raymond

Ray Kurzweil is not big on small talk. At 3:30 on a glorious early summer afternoon, the kind that inspires idle daydreams, he strides into a glass-walled, fifth-floor conference room overlooking the leafy tech town of Waltham, Mass.

Lowering himself into a chair, he looks at his watch and says, “How much time do you need?”

It doesn’t quite qualify as rude. He’s got a plane to catch this evening, and he’s running nearly two hours behind schedule. But there is a hint of menace to the curtness, a subtle warning to keep things moving. And this is certainly in keeping with Kurzweil’s M.O.

“If you spend enough time with him, you’ll see that there’s very little waste in his day,” says director Barry Ptolemy, who tailed Kurzweil for more than two years while filming the documentary Transcendent Man. “His nose is always to the grindstone; he’s always applying himself to the next job, the next interview, the next book, the next little task.”

It would appear the 66-year-old maverick has operated this way since birth. He decided to become an inventor at age 5, combing his Queens, N.Y., neighborhood for discarded radios and bicycle parts to assemble his prototypes. In 1965, at age 17, he unveiled an early project, a computer capable of composing music, on the Steve Allen TV show I’ve Got a Secret. He made his first trip to the White House that same year, meeting with Lyndon Johnson, along with other young scientists uncovered in a Westinghouse talent search. As a sophomore at MIT, he launched a company that used a computer to help high school students find their ideal college. Then at 20, he sold the firm to a New York publisher for $100,000, plus royalties.

The man has been hustling since he learned how to tie his shoes.

Though he bears a slight resemblance to Woody Allen—beige slacks, open collar, reddish hair, glasses—he speaks with the baritone authority of Henry Kissinger. He brings an engineer’s sense of discipline to each new endeavor, pinpointing the problem, surveying the options, choosing the best course of action. “He’s very good at triage, very good at compartmentalizing,” says Ptolemy.

A bit ironically, Kurzweil describes his first great contribution to society—the technology that first gave computers an audible voice—as a solution he developed in the early 1970s for no problem in particular. After devising a program that allowed the machines to recognize letters in any font, he pursued market research to decide how his advancement could be useful. It wasn’t until he sat next to a blind man on an airplane that he realized his technology could shatter the inherent limitations of Braille; only a tiny sliver of books had been printed in Braille, and no topical sources—newspapers, magazines or office memos—were available in that format.

Kurzweil and a team that included engineers from the National Federation for the Blind built around his existing software to make text-to-speech reading machines a reality by 1976. “What really motivates an innovator is that leap from dry formulas on a blackboard to changes in people’s lives,” Kurzweil says. “It’s very gratifying for me when I get letters from blind people who say they were able to get a job or an education due to the reading technology that I helped create…. That’s really the thrill of being an innovator.”

The passion for helping humanity has pushed Kurzweil to establish double-digit companies over the years, pursuing all sorts of technological advancements. Along the way, his sleepy eyes have become astute at seeing into the future.

In The Age of Intelligent Machines, first published in 1990, Kurzweil started sharing his visions with the public. At the time they sounded a lot like science fiction, but a startling number of his predictions came true. He correctly predicted that by 1998 a computer would win the world chess championship, that new modes of communication would bring about the downfall of the Soviet Union, and that millions of people worldwide would plug into a web of knowledge. Today, he is the author of five best-selling books, including The Singularity Is Near and How to Create a Mind.

This wasn’t his original aim. In 1981, when he started collecting data on how rapidly computer technology was evolving, it was for purely practical reasons.

“Invariably people create technologies and business plans as if the world is never going to change,” Kurzweil says. As a result, their companies routinely fail, even though they successfully build the products they promise to produce. Visionaries see the potential, but they don’t plot it out correctly. “The inventors whose names you recognize were in the right place with the right idea at the right time,” he explains, pointing to his friend Larry Page, who launched Google with Sergey Brin in 1998, right about the time the founders of legendary busts and discovered mankind wasn’t remotely ready for Internet commerce.

How do you master timing? You look ahead.

“My projects have to make sense not for the time I’m looking at, but the world that will exist when I finish,” Kurzweil says. “And that world is a very different place.”

In recent years, companies like Ford, Hallmark and Hershey’s have recognized the value in this way of thinking, hiring expert guides like Kurzweil to help them study the shifting sands and make sense of the road ahead. These so-called “futurists” keep a careful eye on scientific advances, consumer behavior, market trends and cultural leanings. According to Intel’s resident futurist, Brian David Johnson, the goal is not so much to predict the future as to invent it. “Too many people believe that the future is a fixed point that we’re powerless to change,” Johnson recently told Forbes. “But the reality is that the future is created every day by the actions of people.”

Kurzweil subscribes to this notion. He has boundless confidence in man’s ability to construct a better world. This isn’t some utopian dream. He has the data to back it up—and a team of 10 researchers who help him construct his mathematical models. They’ve been plotting the price and computing power of information technologies—processing speed, data storage, that sort of thing—for decades.

In his view, we are on the verge of a great leap forward, an age of unprecedented invention, the kinds of breakthroughs that can lead to peace and prosperity and make humans immortal. In other words, he has barely begun to bend time to his will.

Ray Kurzweil does not own a crystal ball. The secret to his forecasting success is “exponential thinking.”

Our minds are trained to see the world linearly. If you drive at this speed, you will reach your destination at this time. But technology evolves exponentially. Kurzweil calls this the Law of Accelerating Returns.

He leans back in his chair to retrieve his cellphone and holds it aloft between two fingers. “This is several billion times more powerful than the computer I used as an undergraduate,” he says, and goes on to point out that the device is also about 100,000 times smaller. Whereas computers once took up entire floors at university research halls, far more advanced models now fit in our pockets (and smaller spaces) and are becoming more miniscule all the time. This is a classic example of exponential change.

The Human Genome Project is another. Launched in 1990, it was billed from the start as an ambitious, 15-year venture. Estimated cost: $3 billion. When researchers neared the time line’s halfway point with only 3 percent of the DNA sequencing finished, critics were quick to pounce. What they did not see was the annual doubling in output. Thanks to increases in computing power and efficiency, 3 percent became 6 percent and then 12 percent and so on. With a few more doublings, the project was completed a full two years ahead of schedule.

That is the power of exponential change.

“If you take 30 steps linearly, you get to 30,” Kurzweil says. “If you take 30 steps exponentially, you’re at a billion.”

The fruits of these accelerating returns are all around us. It took more than 15 years to sequence HIV beginning in the 1980s. Thirty-one days to sequence SARS in 2003. And today we can map a virus in a single day.

While thinking about the not-too-distant future, when virtual reality and self-driving cars, 3-D printing and Google Glass are norms, Kurzweil dreams of the next steps. In his vision, we’re rapidly approaching the point where human power becomes infinite.

Holding the phone upright, he swipes a finger across the glass.

“When I do this, my fingers are connected to my brain,” Kurzweil says. “The phone is an extension of my brain. Today a kid in Africa with a smartphone has access to all of human knowledge. He has more knowledge at his fingertips than the president of the United States did 15 years ago.” Multiplying by exponents of progress, Kurzweil projects continued shrinkage in computer size and growth in power over the next 25 years. He hypothesizes microscopic nanobots—inexpensive machines the size of blood cells—that will augment our intelligence and immune systems. These tiny technologies “will go into our neocortex, our brain, noninvasively through our capillaries and basically put our neocortex on the cloud.”

Imagine having Wikipedia linked directly to your brain cells. Imagine digital neurons that reverse the effects of Parkinson’s disease.Maybe we can live forever.

He smiles, letting the sweep of his statements sink in. Without question, it is an impressive bit of theater. He loves telling stories, loves dazzling people with his visions. But his zeal for showmanship has been known to backfire.

The biologist P.Z. Myers has called him “one of the greatest hucksters of the age.” Other critics have labeled him crazy and called his ideas hot air. Kurzweil’s public pursuit of immortality doesn’t help matters. In an effort to prolong his life, Kurzweil takes 150 supplements a day, washing them down with cup after cup of green tea and alkaline water. He monitors the effects of these chemistry experiments with weekly blood tests. It’s one of a few eccentricities.

“He’s extremely honest and direct,” Ptolemy says of his friend’s prickly personality. “He talks to people and if he doesn’t like what you’re saying, he’ll just say it. There’s no B.S. If he doesn’t like what he’s hearing, he’ll just say, ‘No. Got anything  else?’”

But it’s hard to argue with the results. Kurzweil claims 86 percent of his predictions for the year 2009 came true. Others insist the figure is actually much lower. But that’s just part of the game. Predicting is hard work.

“He was considered extremely radical 15 years ago,” Ptolemy says. “That’s less the case now. People are seeing these technologies catch up—the iPhone, Google’s self-driving cars, Watson [the IBM computer that bested Jeopardy genius Ken Jennings in 2011]. All these things start happening, and people are like, ‘Oh, OK. I see what’s going on.’”

Ray Kurzweil was born into a family of artists. His mother was a painter; his father, a conductor and musician. Both moved to New York from Austria in the late 1930s, fleeing the horrors of Hitler’s Nazi regime. When Ray was 7 years old, his maternal grandfather returned to the land of his birth, where he was given the chance to hold in his hands documents that once belonged to the great Leonardo da Vinci—painter, sculptor, inventor, thinker. “He described the experience with reverence,” Kurzweil writes, “as if he had touched the work of God himself.”

Ray’s parents raised their son and daughter in the Unitarian Church, encouraging them to study the teachings of various religions to arrive at the truth. Ray is agnostic, in part, he says, because religions tend to rationalize death; but like Da Vinci, he firmly believes in the power of ideas—the ability to overcome pain and peril, to transcend life’s challenges with reason and thought. “He wants to change the world—impact it as much as possible,” Ptolemy says. “That’s what drives him.”

Despite what his critics say, Kurzweil is not blind to the threats posed by modern science. If nanotechnology could bring healing agents into our bodies, nano-hackers or nano-terrorists could spread viruses—the literal, deadly kind. “Technology has been a double-edged sword ever since fire,” he says. “It kept us warm, cooked our food, but also burned down our villages.” That doesn’t mean you keep it under lock and key.

In January of 2013, Kurzweil entered the next chapter of his life, dividing his time between Waltham and San Francisco, where he works with Google engineers to deepen computers’ understanding of human language. “It’s my first job with a company I didn’t start myself,” he deadpans. The idea is to move the company beyond keyword search, to teach computers how to grasp the meaning and ideas in the billions of documents at their disposal, to move them one more step forward on the journey to becoming sentient virtual assistants—picture Joaquin Phoenix’s sweet-talking laptop in 2013’s Kurzweil-influenced movie Her, a Best Picture nominee.

Kurzweil had pitched the idea of breaking computers’ language barrier to Page while searching for investors. Page offered him a full-time salary and Google-scale resources instead, promising to give Kurzweil the independence he needs to complete the project. “It’s a courageous company,” Kurzweil says. “It has a biz model that supports very widespread distribution of these technologies. It’s the only place I could do this project. I would not have the resources, even if I raised all the money I wanted in my own company. I wouldn’t be able to run algorithms on a million computers.”

That’s not to say Page will sit idle while Kurzweil toils away. In the last year, the Google CEO has snapped up eight robotics companies, including industry frontrunner Boston Dynamics. He paid $3.2 billion for Nest Labs, maker of learning thermostats and smoke alarms. He scooped up the artificial intelligence startup DeepMind and lured Geoffrey Hinton, the world’s foremost expert on neural networks—computer systems that function like a brain—into the Google fold.

Kurzweil’s ties to Page run deep. Google (and NASA) provided early funding for Singularity University, the education hub/startup accelerator Kurzweil launched with the XPRIZE’s Peter Diamandis to train young leaders to use cutting-edge technology to make life better for billions of people on Earth.

Kurzweil’s faith in entrepreneurship is so strong that he believes it should be taught in elementary school.


Because that kid with the cellphone now has a chance to change the world. If that seems far-fetched, consider the college sophomore who started Facebook because he wanted to meet girls or the 15-year-old who recently invented a simple new test for pancreatic cancer. This is one source of his optimism. Another? The most remarkable thing about the mathematical models Kurzweil has assembled, the breathtaking arcs that demonstrate his thinking, is that they don’t halt their climb for any reason—not for world wars, not for the Great Depression.

Once again, that’s the power of exponential growth.

“Things that seemed impossible at one point are now possible,” Kurzweil says. “That’s the fundamental difference between me and my critics.” Despite the thousands of years of evolution hard-wired into his brain, he resists the urge to see the world in linear fashion. That’s why he’s bullish on solar power, artificial intelligence, nanobots and 3-D printing. That’s why he believes the 2020s will be studded with one huge medical breakthrough after another.

“There’s a lot of pessimism in the world,” he laments. “If I  believed progress was linear, I’d be pessimistic, too. Because we would not be able to solve these problems. But I’m optimistic—more than optimistic: I believe we will solve these problems because of the scale of these technologies.”

He looks down at his watch yet again. Mickey Mouse peeks out from behind the timepiece’s sweeping hands. “Just a bit of whimsy,” he says.

Nearly an hour has passed. The world has changed. It’s time to get on with his day.

Post date:

Oct 9, 2014

This article can also be found at

Transcendance with Johnny Depp – Transhuman Movies

I thought the film Transcendence with Johnny Depp would be a good start form my new Transhuman Movies category because it is based on technology that some of the greatest thinkers and organizations (like DARPA and Google) are working on even as I type (Don’t believe me?  Just have a look around Dawn of Giants and then tell me what you think.).










Spoiler Alert!  Read no further until you have seen the movie…

This movie got terrible reviews, but I loved it.  I only had one problem with the movie itself; the typical Hollywood ending.  Do you really think a human, no matter how smart, would be able to write a virus that could stop a god-like, post-singularity consciousness?  The idea is absurd, however I also understand how hard it would be to write a realistic ending for Transcendence because a post-biological entity would be intelligent past our current ability to understand.  I remedied this little imaginative hiccup by actively suspending my disbelief (the same thing religious people subconsciously do in order to keep their faith*).

Here’s my other problem and it’s actually not with the actual movie at all.  I read several reviews for Transcendence and they all say something like “a cautionary tale” or I read one review which called the movie “Hollywood’s bizarre techno-idiocy” (the reviewer who wrote this is Andrew O’Hehir).  While the latter is just technological ignorance** by someone who is obviously oblivious to what is going on in the tech world, the former just struck me as out of context.  To whom is this a cautionary tale?  Anyone who ‘transcends’ – especially if they have already mastered nanotechnology – would basically be untouchable by unaugmented humans.  On the flip side, William Caster (played by Johnny Depp) was actually acting as a benefactor to humanity and what do us primitive, ape-people do?  We attack without provocation.

I think the ‘cautionary tale’ for us should be that we need to evolve passed our petty, small-minded, ego-centric, dull-witted meat-minds before we decide to lay judgement on an entity who’s only crime was to be smarter and adherent to higher ethical standards that the rest of humanity.

All in all, Transcendence is definitely a ‘must see’ for anyone interested in Transhumanism (and we all should be because it sure looks like that’s where we’re headed).  With names like Johnny Depp, Morgan FreemanRebecca HallPaul BettanyCillian Murphy, and Kate Mara, you know it’s going to be well acted.  Transcendence had a (mostly) well-written plot and the special effects were visually appealing.  I would like to see more movies like this.  If you haven’t seen Transcendence, check out the trailer below.

*I just couldn’t resist…

**Maybe techno-idiocy would be a better description?  Seriously though, O’Hehir’s review reads like a mixture of suppressed jealousy for Johnny Depp (as an actor, mainly, but maybe for the Depp’s character as well) and small-minded conservative paranoia.  Andrew, if you read this, you had better open you eyes to what is happening in the world right now or you’re going to be in for a nasty shock.  The only person you are hurting by staying in the dark is yourself.


Video Info:

Published on Dec 20, 2013

Subscribe to TRAILERS:
Subscribe to COMING SOON:
Like us on FACEBOOK:
Transcendence Official Trailer #1 (2014) – Johnny Depp Sci-Fi Movie HD

Two leading computer scientists work toward their goal of Technological Singularity, as a radical anti-technology organization fights to prevent them from creating a world where computers can transcend the abilities of the human brain.

The Movieclips Trailers channel is your destination for the hottest new trailers the second they drop. Whether it’s the latest studio release, an indie horror flick, an evocative documentary, or that new RomCom you’ve been waiting for, the Movieclips team is here day and night to make sure all the best new movie trailers are here for you the moment they’re released.

In addition to being the #1 Movie Trailers Channel on YouTube, we deliver amazing and engaging original videos each week. Watch our exclusive Ultimate Trailers, Showdowns, Instant Trailer Reviews, Monthly MashUps, Movie News, and so much more to keep you in the know.

Here at Movieclips, we love movies as much as you!

DARPA and Transhumanism – Biology is Technology

This is an article by Peter Rothman at H+ Magazine called Biology is Technology — DARPA is Back in the Game With A Big Vision and It Is H+.  DARPA, the world’s most technologically advanced organization is pursuing transhuman technologies and supporting the transhumanism/singularity movement.  Just a thought to keep in mind while reading this; DARPA doesn’t do science fiction…


Biology is Technology — DARPA is Back in the Game With A Big Vision and It Is H+

Peter Rothman


DARPA, the Defense Research Projects Agency, is perhaps best known for its role as progenitors of the computer networking and the Internet. Formed in the wake of the Soviet Union’s surprise launch of Sputnik, DARPA’s objective was to ensure that the United States would avoid technological surprises in the future. This role was later expanded to causing technological surprises as well.

And although DARPA is and has been the leading source of funding for artificial intelligence and a number of other transhumanist projects, they’ve been missing in action for a while. Nothing DARPA has worked on since seems to have had the societal impact of the invention of the Internet. But that is about to change.

The current director of DARPA is Dr. Arati Prabhakar. She is the second female director of the organization, following the previous and controversial director Regina Dugan who left the government to work at Google. The return to big visions and big adventures was apparent and in stark contrast to Dugan’s leadership of the organization.

Quoted in WIRED, Dugan had, for example, stated that “There is a time and a place for daydreaming. But it is not at DARPA,” and she told a congressional panel in March 2011, “Darpa is not the place of dreamlike musings or fantasies, not a place for self-indulging in wishes and hopes. DARPA is a place of doing.”

Those days are gone. DARPA’s new vision is simply to revolutionize the human situation and it is fully transhumanist in its approach.

The Biological Technologies Office or BTO was announced with little fanfare in the spring of 2014. This announcement didn’t get that much attention, perhaps because the press release announcing the BTO was published on April Fool’s Day.

But DARPA is determined to turn that around, and to help make that happen, they held a two day event in the SIlicon Valley area to facilitate and communicate about radical changes ahead in the area of biotechnologies. Invitees included some of the top biotechnology scientists in the world. And the audience was a mixed group of scientists, engineers, inventors, investors, futurists, along with a handful of government contractors and military personnel.

Biology is Technology

I was lucky to be invited to this event because although I spend a large amount of time researching technology and science as related to the future, nothing prepared me for the scope of the DARPA vision. The ostensible purpose of the two day meeting was to introduce the DARPA Biotechnology Program Office and to connect program managers with innovators, investors, and scientists working in biotechnology and related disciplines. But really they were here to shake things up.

darpa bit01

Opening the Biology Is Technology (BiT) event was DARPA Director Dr. Arati Prabhakar. Dr. Prabhakar’s presence at this meeting demonstrates how serious DARPA is about this effort, and one imagines that she was also in California to support President Obama’s Cybersecurity Summit with top leaders of the computer industry.

Dr. Prabhakar interviewed GE’s Sue Siegel about innovation and GE’s role in creating the future. This was a freewheeling conversation in which Ms. Siegel turned the tables and interviewed Dr. Prabhakar instead. What followed was an outstanding introduction to the proactionary approach to research and development, or in DARPA’s language, preventing surprises by creating your own.

Dr. Prabhakar clearly set up the DARPA’s latest incarnation as a return to the big vision, swing for the fences approach. She discussed DARPA’s approach to managing risks while creating high impact technologies. In this vision, DARPA’s role is to help scientists and innovators to “remove early risk” which might prevent them from obtaining investment and bringing novel ideas to market. DARPA was described by one presenter as a “always friendly, but somewhat crazy rich uncle” and they made it clear that they were going to put a fair bit of money behind these ideas.

darpa bit04

This meeting was focused around the launch of the new program office, the Biotechnology Program Office, although other program managers were present. The BTO is headed Dr. Geoff Ling who is a practicing Army medical doctor. Dr. Ling is an energetic spokesman for the DARPA vision and the BTO. And it is notable that it is an M.D. that is in charge of this effort because many of the developments being undertaken by the BTO are simply going to revolutionize the practice of medicine as we know it today. With the energetic Dr. Ling in charge, you can imagine it getting done.

Dr. Ling portrayed DARPA’s ambitious goals and set out what was one of the clearest presentations of the proactionary principle which I have heard. But that was just the opening volley; DARPA is going full on H+.

Following the inspirational presentation by Dr. Ling, the individual program managers had a chance to present their projects.

The first Program Manager to present, Phillip Alvelda, opened the event with his mind blowing project to develop a working “cortical modem”. What is a cortical modem you ask? Quite simply it is a direct neural interface that will allow for the visual display of information without the use of glasses or goggles. I was largely at this event to learn about this project and I wasn’t disappointed.

Leveraging the work of Karl Deisseroth in the area of optogenetics, the cortical modem project aims to build a low cost neural interface based display device. The short term goal of the project is the development of a device about the size of two stacked nickels with a cost of goods on the order of $10 which would enable a simple visual display via a direct interface to the visual cortex with the visual fidelity of something like an early LED digital clock.

The implications of this project are astounding.

Consider a more advanced version of the device capable of high fidelity visual display. First, this technology could be used to restore sensory function to individuals who simply can’t be treated with current approaches. Second, the device could replace all virtual reality and augmented reality displays. Bypassing the visual sensory system entirely, a cortical modem can directly display into the visual cortex enabling a sort of virtual overlay on the real world. Moreover, the optogenetics approach allows both reading and writing of information. So we can imagine at least a device in which virtual objects appear well integrated into our perceived world. Beyond this, a working cortical modem would enable electronic telepathy and telekinesis. The cortical modem is a real world version of the science fiction neural interfaces envisioned by writers such as William Gibson and more recently Ramez Naam.

To the extent that it is real, the cortical modem is still a crude device. This isn’t going to give you a high fidelity augmented reality display soon. And since the current approach is based in optogenetics, it requires a  genetic alteration of the DNA in your neurons. The health implications are unknown, and this research is currently limited to work with animal models. Specifically discussed was a real time imaging of the zebrafish brain with about 85,000 neurons.

Notably, while i was live blogging the event one h+ Magazine reader volunteered to undergo this possibly dangerous genetic procedure in exchange for early access to a cortical modem. A fact which I later got to mention directly to Dr. Prabhakar at the reception afterwards.

darpa bit18

Following the astounding cortical modem presentation, Dr. Dan Wattendorf presented DARPA’s efforts to get in front of and prevent disease outbreaks such as the recent crisis with ebola in Africa. This was a repeated theme throughout the event. DARPA is clearly recognizing the need to avoid “technological surprises” from nature as well as from nations. It is widely recognized that the current technology for dealing with novel disease outbreaks, the so called “post antibiotic” era, and bioweapons requires entirely new strategies for detection and rapid response to communicable illnesses. As an example, the ebola vaccine currently being considered for use has been in development for decades. Moreover, only a small number of vaccines exists even for known diseases. A novel threat might provide only weeks or months to respond however. Clearly new approaches are needed in both detection of disease outbreaks and response to them. Perhaps most interesting to me here was the discussion of transient gene therapies where an intervention that alters an organism’s DNA but which “turn off” after some time period or event.

Dr. Jack Newman Chief Science Officer at Amyris and board member of the Biobricks Foundation followed. Jack has recently joined DARPA as a program manager himself and he talked about Amyris’ work with producing useful materials from bio-engineered yeast. This project funded under DARPA’s Living Foundries program is just one of a number of efforts seeking to create novel materials and production processes. Dr. Newman presented a view into the programming of living systems using Amyris software that was quite interesting.

This provided a natural segue to program manager Alicia Jackson’s presentation on the broader Living Foundries program which promises to leverage the synthetic and functional capabilities of biology to create biologically-based manufacturing platforms to provide access to new materials, capabilities and manufacturing paradigms based in biology and synthetic biology. Imagine materials that self assemble, heal, and adapt to their changing environment as biological systems do. The program currently focuses on compressing the biological design-build-test-learn cycle by at least 10 times in both time and cost, while simultaneously increasing the complexity of systems that are created. The second phase of the program builds on these advancements and tools to create a scalable, integrated, rapid design and prototyping infrastructure for the engineering of biology.

Following this, a more casual presentation, a “fireside” chat between famed geneticist Dr. George Church and technology historian George Dyson. This chat rambled a bit and started off slowly. But once it got going, Church laid out his vision of engineering ecosystems using “gene drives” and throughout a variety of remarks that were of interest. For example, he expressed skepticism about “longevity” research as compared with “age reversal” techniques. GDF 11 got a mention. He also discussed the observation of genetic changes in cells grown outside of the body for example in so called “printed” organs, and discussed his alternative approach of growing human donor organs in transgenic pigs. He suggested the real possibility of enhancing human intelligence through genetic techniques and pointed to the complete molecular description of living systems as a goal.

This led into another amazing presentation from new DARPA program manager Julian Sanchez who is leading DARPA’s Human-machine symbiosis group which is developing many of the groundbreaking prosthetics such as mind controlled limbs which have recently been in the news. DARPA’s investment in advanced limb prosthetics has already delivered an FDA-approved device but “cognitive prosthetics” are next. DARPA is developing hardware and software to overcome the memory deficits and neuropsychiatric illnesses afflicting returning veterans for example.

Screen Shot 2015-02-13 at 9.56.11 AM

While there wasn’t much shown regarding applying these ideas to healthy individuals or combat systems, we can assume that this work is underway. One patient was shown employing a neural interface to fly a simulated aircraft for example. And DARPA is supposedly working towards a system that would allow one person to pilot multiple vehicles by thought alone. The approach is bigger than just thought controlled drones however, because it focuses on creating symbiosis which is to ensure a mutual benefit to both partners in a relationship. The potential of this idea is often overlooked and misunderstood in conversations about machine intelligence for example.

Together with the cortical modem, these devices promise to revolutionize human abilities to repair ourselves, extend ourselves, communicate and indeed they will eventually and inevitably alter what it means to be human. Where is the boundary between self and other if we can directly share thoughts, dreams, emotions, and ideas? When we can experience not only the thoughts but feelings of someone else? How will direct neural access to knowledge change education and work? These technologies raise many questions for which we do not yet have answers.

Dr. Sanchez closed by calling on members of the audience to “come to DARPA and change the world” a call which didn’t ring hollow by this point. And things were just getting started.

This statement was made repeatedly. DARPA is open for business and looking for collaborators to work with. They’re building teams that work across subjects, disciplines and communities. They seek to build a community of interest aimed at tackling some of mankind’s greatest challenges, including things like curing communicable diseases and reversing ecosystem collapse. DARPA has some unique instruments and capabilities to offer anyone developing radical technological ideas and they want you to know about them. They openly invited the audience to submit abstracts for research ideas and promised that every email they receive would be answered “at least once”.

Several different DARPA performers also gave presentations. These are the people that DARPA has hired under contract to actually do the work and the presentations were a pretty heady and eclectic mix ranging from deep science to the unusual and on to the profound. Dr.Michel M. Maharbiz of UC Berkeley who is developing “neural dust” and has done controversial work with insect cyborgs. Saul Griffith of Otherlab presented the farthest ranging talk including his work with computer controlled inflatables which includes development of exoskeleton concepts, pneumatic sun trackers for low cost solar power applications, and a life sized robotic inflatable elephant he made for his daughter. I was also intrigued by a toy they had designed that was a universal constructor. He also had some very interesting analysis of the world’s energy production and utilization, showing areas where DARPA (and anyone else interested) could make the biggest difference to slow climate change.

How about curing all known and even unknown communicable diseases? Exploring “post pathogen medicine” is an effort in which DARPA is working to identify “unlikely heros”, those individuals with surprising  resilience or resistance to dangerous diseases. The idea is to apply big data analytics to analyze data from a large number of existing scientific analyses that might hide data indicating genetic markers for immunity or disease resistance in individuals.

Karl Deisseroth presented his work with optogenetics and his newer techniques for transforming neural tissue into a clear gel that can be imaged. He presented some impressive images from this work and his new unpublished imaging technique called “Swift 3D”. The resulting images are real-time maps of neural events. For example, Dr. Deisseroth presented visual representations of mouse thoughts from one controlled experiment.

Beyond reading mids, DARPA’s BiT programs are also looking to revolutionize the practice of biology and science in general. Dr. Stephen Friend presented Sage Networks a science oriented social sharing and collaboration platform which radically realigns the practices of scientific publication and data sharing. Apart from providing a standardized platform for publishing annotated bioscience datasets, the system requires users to make their data available to other researchers while still preserving their ability to get credit for original ideas and work. This project is important and could see application elsewhere outside of the biosciences. One member of the audience was so impressed with this idea she was compelled to comment.

darpa bit38

More directly, DARPA seeks to revolutionize the day to day practice of biotechnology and drug development. A series of “organs on a chip” was presented. These devices allow cultures of cells from an individual’s organs to be grown and treated with medications to assess effectiveness and possible side effects without the need to use an animal model or test on a live human subject. While they haven’t replicated every human organ, they did have a “gut on a chip” shown here. These little chips are flexible and kind of artistic actually. The company Emulate had a representative explaining the technology at the reception after the first day of the event. This is just one of several projects in which DARPA is seeking to understand the effects of drugs including adverse side effects in novel ways. The eventual hope is to shorten time to market while also radically lowering the costs of new medications.

Microfluidics — making tiny droplets

Another impressive series of developments was presented in the area of microfluidics. These developments consist of a set of technologies for creating very small droplets, and various mechanisms for manipulating, and experimenting on these tiny drops. Currently the practice of bioscience experimentation is largely performed by human postdocs who spend thousands of hours pipetting, mixing, and carefully measuring results. But using microfluidics and a series of intricate valves, nozzles, and so on, many of these procedures can be automated and radically sped up.

The audience got a chance to mix with the DARPA program managers after the event at a reception where some of DARPA’s projects were presented in a hands on environment. I had a brief conversation with Dr. Prabhakar who mentioned that she was aware of Humanity+ and transhumanism more generally. She was excited to have us involved, but also expressed some dismay at the political aspect of the transhumanist movement.

Well known Silicon Valley venture capitalist, rocketeer, transhumanist, and super guy Steve Jurvetson was spotted “high fiving” a DARPA funded telepresence robot developed at Johns Hopkins APL at the reception.

The robot operates via a head mounted display which places the wearer into the robot’s “head” and two instrumented gloves which give the wearer control over the robot’s dexterous human like hands. The hands get a bit hot due to the motors that move them however, so a fist bump is going to be prefered over a handshake with this guy.

darpa bit28 darpa bit32 darpa bit34

DARPA’s Inner Buddha

a photo of a child holding hands with a prosthetic hand

AT the two day BiT event, it was revealed that DARPA hasn’t just gone full on transhumanist, they’re full Buddha.

The goal of his project as presented by one of the project investigators, Dr. Eddie Chang of the University of California at San Francisco, during day two’s “Lightning Round” , was nothing less than eliminating human suffering.

Curing communicable diseases and prosthetics were the top of the list day one.

But Dr. Chang was talking about curing a deeper inner injury, the sort of thing that causes mental illness, depression, and intractable PTSD;  problems which military veterans notably suffer disproportionately.

The first stage of the project is underway and working with patients who are already undergoing brain surgery for intractable epilepsy. Four individuals so far have had their detailed neural patterns recorded 24 hours a day for ten days using an implanted device. The resulting neural map is at the millimeter and millisecond level and is correlated with other information about the patient’s mood and physiological state.

In another program, ElectRX, DARPA is investigating the use of similar neural stimulation techniques to promote healing of the body from injuries and disease. In both cases the emphasis isn’t  on working around or bypassing damage, but using electrical stimulation to promote healing and repair. DARPA wants to heal you. Dr. Chang stated, for example, that the success of his project wouldn’t be marked by the date of the first implanted device, but rather the date of the first removal.


Creating novel industrial processes to reduce climate change? DARPA had that covered too. So while Dr. Ling made sure to remind the audience up front that this was all about supporting warfighters, it was impossible to not consider the deeper implications of what was being presented as the event proceeeded.

The reality is that the true DARPA mission isn’t just about war. A happier, more secure and sustainable world is the best possible security for the United States, a fact that DARPA’s leaders seemingly recognize at the moment.  And so DARPA is developing technologies for rapid identification of communicable diseases, restoring lost biological functions, producing materials and developing novel industrial processes to prevent slow and reverse climate change, save ecosystems and more.

And DARPA’s next revolution, biology is technology, is something even bigger than the Internet. They’re out to revolutionize the practice and products of bio-science and along the way they are re-defining what it will mean to be human. Will we alter our biology to enable direct mind to mind communication? Can we extend our immune system into the world to cure all communicable diseases? Can we cure and repair the most damaging and persistent mental illnesses?

In this amazing two day event, DARPA opened the door to a wider public collaboration and conversation about these amazing ideas.

A second event is planned for New York City in June and video of the February presentations will be available online according to DARPA representatives at the event. I will update this story with videos when they are available.

This article can also be found at

Transhumanism and Religion by John G. Messerly

Here is an excellent, bite-sized article from John G. Messerly on the IEET website called simply Transhumanism and Religion.  In the article, Messerly presents a case for why he considers religion to be premature transhumanism.  


Transhumanism and Religion


By John G. Messerly
The Meaning of Life

Transhumanism is: The intellectual and cultural movement that affirms the possibility and desirability of fundamentally improving the human condition through applied reason, especially by developing and making widely available technologies to eliminate aging and to greatly enhance human intellectual, physical, and psychological capacities … transhumanism is a way of thinking about the future that is based on the premise that the human species in its current form does not represent the end of our development but rather a comparatively early phase.1<sup< p=””>

Transhumanism appears to have nothing in common with religion, defined as: “the belief in and worship of a god or gods, or any such system of belief and worship…”In transhumanism the gods play no role.

Yet the two are not entirely dissimilar. Religious people generally want to overcome the limitations of the body and live forever, just like transhumanists. Arising before transhumanist ideas were conceivable, religions had no other option but to advise their followers to accept death and hope for the best. Religious beliefs provided comfort in the face of death and natural evils before the advent of science and technology. We might think of religion as premature transhumanism. Religion is not the opposite of transhumanism but a seed from which transhumanism can grow.

However today the comfort provided by archaic religious superstitions impedes advancement and therefore should be set aside. We need to grow beyond religion. But must we relinquish religious beliefs now, before science gives us everything we want? Yes. The most important reason to abandon religious belief is religion’s opposition to most forms of progress. For the most part religion has opposed: the elimination of slavery, the use of birth control, women’s and civil rights, stem cell research, genetic engineering, and science in general. Religion is from our past; it opposes the future.

Can humans function without the old religious narratives? They can, they just need new narratives based on a scientific worldview. Such narratives could be transhumanist, of humans playing their role as links in a chain leading to greater forms of being and consciousness; or perhaps they will focus on the idea that cosmic evolution is the story of the universe becoming self-conscious through conscious beings like ourselves. Whatever shape those narratives take, they must be informed by the belief that humans can evolve into something much more than they are now.

But against this seemingly infinite temporal background, what of the significance of a single, finite human life, and what is the significance of all of cosmic evolution? We are significant if we play our part in advancing evolution, if we accept our role as the protagonists of the evolutionary epic. And if we succeed our post-human descendants will understand these ultimate questions, giving our own lives—by then long past—a significance we can now hardly fathom. For the moment we must take solace in the hope that the better world we imagine is indeed possible.

1. This quote is from the Humanity+ website’s FAQ section.

2. From “The Cambridge International Dictionary of English.”

Having introduced transhumanists ideas to university students over the years, I am familiar with typical objections to transhumanist philosophy: if we don’t die the world will become overpopulated; not having a body would be yucky; this is all science fiction; lots of things can go wrong; technology is bad; death makes life meaningful; immortality would be boring; etc.

So I was surprised after yesterday’s post to receive hostile responses of the “we shouldn’t play god,” or “we should let nature take its course” variety. You can find similar critiques at links like : “The Catholic Church Declares War on Transhumanism”  and “Transhumanism: Mankind’s Greatest Threat.” Here is a statement from the latter:

Various organizations desire to use emerging technology to create a human species so enhanced that they cease to be humans. They will be post-humans with the potential of living forever. If these sciences are not closely monitored and regulated, transhumanists’ arrogant quest to create a post-human species will become a direct assault on human dignity and an attack on God’s sovereignty as Creator. We must decide on an unmovable line now, one that upholds human dignity based on Biblical Truth.

It is no longer enough to be pro-life; we have now entered a time when we must be pro-human. Education about the full implications of these emerging sciences is a key to be able to directly confront these assaults on humanity.

If one truly believes that humans should accept their fate, that they were specially designed and created by the gods, and that the divine plans includes evil and death, then the condemnations of transhumanism are justified. But will this opposition succeed? I doubt it. Most do not desire to go back to the middle ages, when believers prayed sincerely and then died miserably.

Today some still consult faith healers, but the intelligent go to their physicians. Everything about technology plays god, and letting nature takes its course means that half the people reading this article would have died in childbirth or from childhood diseases before the advent of modern medicine.

Still there are good reasons to be cautious about designing and using future technologies, as Bill Joy outlined more than a decade ago in “Why The Future Doesn’t Need Us.”  (Here is my published criticism of Joy’s argument.) Yes, we should be cautious about the future, but we should not stand still.

​Do we really want to turn the clock back 100 years before computers and modern medicine? Do we really want to freeze technology at its current level? Look before we leap, certainly, but leap we must. If we do nothing, eventually we will go extinct: asteroids will hit the planet, the climate will change irrevocably, bacteria will evolve uncontrollably, and in the far future the sun will burn out. Only advanced technologies give us a chance against such forces.

If we do nothing we will die; if we gain more knowledge and the power that accompanies it, we have a chance. With no risk-free way to proceed, we should be brave and bold, unafraid to guide our own destiny.

Perhaps the best way to illuminate the choice is to consider a previous choice human beings faced in their history. What should they do about disease? Should they pray to the gods and have faith that the gods will cure them, or should they use science and technology to find the cures themselves? In hindsight the answer is clear. Praying to the gods makes no difference, whereas using modern medicine has limited death and disease, and nearly doubled the human lifespan in the last century.

When medieval Europeans contracted the plague they prayed hard … and then died miserably. Other examples also easily come to mind. What is the best way to predict weather, harness energy, capture sound, achieve flight, communicate over great distances, or fly to far off planets? In none of these cases is doing nothing and hoping for the best a good bet. All of the above were achieved through the use of science and technology.

These examples highlight another advantage to making the transhumanist wager—the incremental benefits that accrue as we live longer and better lives as we approach the holy grail of a blissful immortality. Such benefits provide assurance that we are on the right path, which should increase our confidence that we are making the correct wager. In fact, the benefits already bestowed upon us by science and technology in the past confirm that it is the best path toward a better future. (Half the readers of this essay would have died from a childhood disease just a century ago.) As these benefits accumulate, and as we become aware of them, our existence will become increasingly indistinguishable from the most enchanting descriptions of any afterlife.

So we should throw off archaic superstitions and use our technology? Yes Will we do this? Yes. I can say with confidence that when an effective pill that stops or reverses aging becomes available at your local pharmacy—it will be popular. Or if, as you approach death, you are offered the opportunity to have your intact consciousness transferred to your younger cloned body, a genetically engineered body, a robotic body, or a virtual reality, most will use such technologies when they have been shown to be effective. By then almost everyone will prefer the real thing to a leap of faith. At that point there will be no need to make a transhumanist wager. The transhumanist will already have won the be

However at the moment the above is science fiction and subject to trillions of variables. Contingent factors beyond our imagination will lead to some unimaginable future, or no future at all. Thus evolutionary progress is not inevitable, and in no way do our views entail technological optimism—technology can be used for good or ill.

But even if our technology can lead to a glorious future, it could be halted by terrestrial or celestial disasters, or by dogmatists, zealots, religious fanatics, and others who oppose progress. The opponents may have legitimate fears about the repercussions of future technologies, but they may also be guided by ignorance and irrationality.

They may long for a past paradise, fear what they don’t understand, believe they possess a monopoly on the truth, or think humans subservient to super beings. But for whatever reasons they oppose change, preferring stasis and stagnation to dynamic, progressive evolutionism. They prefer to prevent the groundswell of initiative, creativity, inventiveness, perseverance, and hope that drive evolution forward. They are fearful that the new world will render them and their beliefs, anachronistic. They are the enemies of the future.

But if the surge of cosmic longing presses forward, then higher forms of being and consciousness will emerge, and the universe will become increasingly self-consciousness. This is the story of cosmic evolution, of a universe becoming self-conscious through the creation of conscious beings. Humans are not an end, but a beginning. They need not fear imaginary gods, but need instead to have the courage to create minds more powerful than the gods. Let the dark ages not again descend upon us—let our most fantastic longings be realized. Let us have faith in the future.

John G. Messerly is an Affiliate Scholar of the IEET. He received his PhD in philosophy from St. Louis University in 1992. His most recent book is The Meaning of Life: Religious, Philosophical, Scientific, and Transhumanist Perspectives. He blogs daily on issues of philosophy, evolution, futurism and the meaning of life at his website:

This article can also be found at