Ben Goertzel – Beginnings [on Artificial Intelligence – Thanks to Adam A. Ford for this video.]

In this video, Ben Goertzel talks a little about how he got into AGI research and about the research, itself.  I first heard of Ben Goertzel about four years ago, right when I was first studying computer science and considering a career in AI programming.  At the time, I was trying to imagine how you would build an emotionally intelligent machine.  I really enjoyed hearing some of his ideas at the time and still do.  Also at the time, I was listening to a lot of Tony Robbins so you could imagine, I came up with some pretty interesting theories on artificial intelligence and empathetic machines.  Maybe if I get enough requests I’ll write a special post on some of those ideas.  You just let me know if you’re interested.

Runtime: 10:33

This video can also be found at here and here.

Video Info:

Published on Jul 27, 2012

Ben Goertzel talks about his early stages in thinking about AI, and two books : The Hidden Pattern, and Building Better Minds.

The interview was done in Melbourne Australia while Ben was down to speak at the Singularity Summit Australia 2011.

Interviewed, Filmed & Edited by Adam A. Ford


This short YouTube video on neurobiotics (called A Simulated Mouse Brain in a Virtual Mouse Body) talks about building a ‘virtual mouse’ by putting a computer model of a mouse brain in a virtual mouse body.  How cool is science?


Runtime: 2:28

This video can also be found at

Video Info:

Published on Feb 23, 2015

Neurorobotics engineers from the Human Brain Project (HBP) have recently taken the first steps towards building a “virtual mouse” by placing a simplified computer model of the mouse brain into a virtual mouse body. This new kind of tool will be made available to scientists, both HBP and worldwide. Read more:…

Useful Links:

Human Brain Project:
NEST simulator software for spiking neural network models:
Jülich Press Release 2013, Largest neuronalnetwork simulation using NEST :

Open Source Data Sets:
Allen Institute for Brain Science:
Bioinformatics Research Network (BIRN):

The Behaim Globe:
Germanisches National Museum,
Department of Geodesy and Geoinformation, TU Wien,


Transhumanism : Scientist successfully upload a Worms Mind into the body of a Robot (Dec 17, 2014)

This video (called Transhumanism : Scientist successfully upload a Worms Mind into the body of a Robot (Dec 17, 2014)) is a short video (only 37 seconds), but the implications are astounding.  If it can be done for a worm…

Runtime: 0:37

This video can also be found at

Video Info:

Published on Dec 17, 2014


Tom Horn : Transhumanism Cybernetics Nephilim Giants Genetically Modified Humans (Mar 23, 2014)…

News Articles:

Worm ‘brain’ controls LEGO robot – what this means for the human brain…

So It Begins: Scientists Put Worm Brain In Robot Body…

Worm ‘Brain’ Uploaded Into Lego Robot…

FAIR USE NOTICE: This video may contain copyrighted material. Such material is made available for educational purposes only. This constitutes a ‘fair use’ of any such copyrighted material as provided for in Title 17 U.S.C. section 106A-117 of the U.S. Copyright Law.



NASA’s Warp Drive Project

Alright, this is not exactly a transhumanist/singularity article, but it’s just plain cool and I knew I needed to post it on DoG (great acronym, eh?).  The article is from the Before It’s News website and has the rather lengthy title of NASA’s Warp Drive Project: “Speeds” That Could Take a Spacecraft to Alpha Centauri in Two Weeks Even Though the System is 4.3 Light-Years Away.  Yikes!  I guess I don’t need to sum this one up for you…


NASA’s Warp Drive Project: “Speeds” That Could Take a Spacecraft to Alpha Centauri in Two Weeks Even Though the System is 4.3 Light-Years Away

Tuesday, May 14, 2013 15:57

NASA’s Warp Drive Project: “Speeds” that Could  Take a Spacecraft to Alpha Centauri in Two Weeks — Even Though the System is 4.3 Light-Years Away.

A few months ago, physicist Harold White stunned the aeronautics world when he announced that he and his team at NASA had begun work on the development of a faster-than-light warp drive.

His proposed design, an ingenious re-imagining of an Alcubierre Drive, may eventually result in an engine that can transport a spacecraft to the nearest star in a matter of weeks — and all without violating Einstein’s law of relativity.
Runtime: 7:41
The above image of a Vulcan command ship features a warp engine similar to an Alcubierre Drive. Image courtesy CBS.
The Alcubierre Drive
The idea came to White while he was considering a rather remarkable equation formulated by physicist Miguel Alcubierre. In his 1994 paper titled, “The Warp Drive: Hyper-Fast Travel Within General Relativity,”
Alcubierre suggested a mechanism by which space-time could be “warped” both in front of and behind a spacecraft.
Michio Kaku dubbed Alcubierre’s notion a “passport to the universe.” It takes advantage of a quirk in the cosmological code that allows for the expansion and contraction of space-time, and could allow for hyper-fast travel between interstellar destinations.
 Essentially, the empty space behind a starship would be made to expand rapidly, pushing the craft in a forward direction — passengers would perceive it as movement despite the complete lack of acceleration.
White speculates that such a drive could result in “speeds” that could take a spacecraft to Alpha Centauri in a mere two weeks — even though the system is 4.3 light-years away.
In terms of the engine’s mechanics, a spheroid object would be placed between two regions of space-time (one expanding and one contracting).
A “warp bubble” would then be generated that moves space-time around the object, effectively repositioning it — the end result being faster-than-light travel without the spheroid (or spacecraft) having to move with respect to its local frame of reference.
“Remember, nothing locally exceeds the speed of light, but space can expand and contract at any speed,”
 ”However, space-time is really stiff, so to create the expansion and contraction effect in a useful manner in order for us to reach interstellar destinations in reasonable time periods would require a lot of energy.”
“However,” said White, “based on the analysis I did the last 18 months, there may be hope.” The key, says White, may be in altering the geometry of the warp drive itself.
A new design
“My early results suggested I had discovered something that was in the math all along,” he recalled. “I suddenly realized that if you made the thickness of the negative vacuum energy ring larger — like shifting from a belt shape to a donut shape — and oscillate the warp bubble, you can greatly reduce the energy required — perhaps making the idea plausible.”
White had adjusted the shape of Alcubierre’s ring which surrounded the spheroid from something that was a flat halo to something that was thicker and curvier.
He presented the results of his Alcubierre Drive rethink a year later at the 100 Year Starship conference in Atlanta where he highlighted his new optimization approaches — a new design that could significantly reduce the amount of exotic matter required.
 And in fact, White says that the warp drive could be powered by a mass that’s even less than that of the Voyager 1 spacecraft.
“We’re utilizing a modified Michelson-Morley interferometer — that allows us to measure microscopic perturbations in space time,” he said. “In our case,
we’re attempting to make one of the legs of the interferometer appear to be a different length when we energize our test devices.” White and his colleagues are trying to simulate the tweaked Alcubierre drive in miniature by using lasers to perturb space-time by one part in 10 million.
Of course, the interferometer isn’t something that NASA would bolt onto a spaceship. Rather, it’s part of a larger scientific pursuit.
“Our initial test device is implementing a ring of large potential energy — what we observe as blue shifted relative to the lab frame — by utilizing a ring of ceramic capacitors that are charged to tens of thousands of volts,”
 ”We will increase the fidelity of our test devices and continue to enhance the sensitivity of the warp field interferometer — eventually using devices to directly generate negative vacuum energy.”
He points out that Casimir cavities, physical forces that arise from a quantized field, may represent a viable approach.
And it’s through these experiments, hopes White, that NASA can go from the theoretical to the practical.
“This loophole in general relativity would allow us to go places really fast as measured by both Earth observers, and observers on the ship — trips measured in weeks or months as opposed to decades and centuries,” he said.
Top image: CBS Studios Inc. Spearpoint,, Harold White, Flickriver.
Read more:


This article can also be found here.

Video Info:

Published on May 15, 2013

Results of his Alcubierre Drive rethink:……………

Icarus Interstellar…

Michio Kaku dubbed Alcubierre’s notion a “passport to the universe.” It takes advantage of a quirk in the cosmological code that allows for the expansion and contraction of space-time, and could allow for hyper-fast travel between interstellar destinations. Essentially, the empty space behind a starship would be made to expand rapidly, pushing the craft in a forward direction — passengers would perceive it as movement despite the complete lack of acceleration.

Scientists speculate that such a drive could result in “speeds” that could take a spacecraft to Alpha Centauri in a mere two weeks — even though the system is 4.3 light-years away.

Read more here:…

The warp drive: hyper-fast travel within general relativity:…

New York Times…

100 Year Starship project

Results of his Alcubierre Drive rethink:…

Music credit: mik300z…
Vangelis – Echoes – length 7:51…

Graphene science | Mikael Fogelström | TEDxGöteborg

This is another TEDx talk (I’m on another TED kick, what can I say…) called Graphene science | Mikael Fogelström | TEDxGöteborg.  I respect Mikael Fogelström for delivering this speech.  Mikael was obviously struggling with stage fright, but he didn’t stop and what’s more important is that it was actually still a great presentation.  

Runtime: 19:59

This video can also be found here.

Video Info:

Published on Jan 12, 2014

Graphene. These just one-atom thick carbon structures is without doubt the most buzzed-about material in the world of science today. Kostya Novoselov and André Geim was awarded the 2010 Nobel Prize for their work on the matter and right now research teams all over the world are competing to turn knowledge into applications. The possibilities are endless. Mikael Fogelström, Professor at Chalmers, coordinates two large national research projects on graphene science. “We are still in the beginning”, he says.

In the spirit of ideas worth spreading, TEDx is a program of local, self-organized events that bring people together to share a TED-like experience. At a TEDx event, TEDTalks video and live speakers combine to spark deep discussion and connection in a small group. These local, self-organized events are branded TEDx, where x = independently organized TED event. The TED Conference provides general guidance for the TEDx program, but individual TEDx events are self-organized.* (*Subject to certain rules and regulations)

Making Small Stuff Do Big Things: TEDxHouston 2011 – Wade Adams – Nanotechnology and Energy

This is Wade Adams delivering a TEDx presentation called TEDxHouston 2011 – Wade Adams – Nanotechnology and Energy.  I remember reading something at the MIT News website a few years ago about gold nanorods using gamma rays to destroy cancer cells (ok, just looked it up – I was close… kinda).  Let me just say that nanotech is finally becoming a reality.  Let’s just all agree not to make gray goo, yeah?


Runtime: 25:20

This video can also be found at

Video Info:

Uploaded on Aug 6, 2011

Dr. Wade Adams is the Director of the Smalley Institute for Nanoscale Science and Technology at Rice University. The Institute is devoted to the development of new innovations on the nanometer scale. Some of the institute’s current thrusts include research in carbon nanotubes, medical applications of nanoparticles, nanoporous membranes, molecular computing, and nanoshell diagnostic and therapeutic applications.

Wade was appointed a senior scientist (ST) in the Materials Directorate of the Wright Laboratory in 1995. Prior to that he was a research leader and in-house research scientist in the directorate. For the past 36 years he has conducted research in polymer physics, concentrating on structure-property relations in high-performance organic materials. He is internationally known for his research in high-performance rigid-rod polymer fibers, X-ray scattering studies of fibers and liquid crystalline films, polymer dispersed liquid crystals, and theoretical studies of ultimate polymer properties.

Building a SUPER BRAIN – The Human Brain Project

Here’s a video called Building a Super Brain.  It’s about the Human Brain Project.  Among the HBP’s primary objective is the development of brain simulation technology.  Exciting work!


This video can also be found at

Video Info:

Published on Oct 10, 2013

The ‘Human Brain Project’ is a massive European initiative with the aim of building the worlds first and complete human brain on a supercomputer. Among the goals of this mega project are trying to reach the next generation in fields like medicine, robotics and supercomputing. Including trying to understand and help solve dreadful brain deceases like Parkinson, Alzheimer, Epilepsy’s and many others.

The project is mainly founded and funded through the support of the European Union ‘7th framework program’ with over 1 Billion Euro’s in initial investments for the projected 10 year program. The project is likely to advance beyond that when the first complete human brain simulations are going to give scientists huge new insights into many of the brain deceases and afflictions currently still unsolved.

The huge supercomputing developments are going to be accessible by other agencies in Europe as well. Like for advancing weather predictions, subatomic physics simulations and interstellar simulations for astronomers, among other fields. The neoromorphic technologies are expected to have a big impact on robotics as the technologies will allow robots to start processing data from their environments more in line with human brains and the brains of other higher animals.

The BioBricks Foundation – Synthetic Biology and Modular DNA

The following is from the BioBricks Foundation where research into synthetic biology and biotechnology is taking place.  The article and video below are from the BioBricks Foundation About page.  I’ll be keeping an eye on their research and I will post anything interesting that arises from it here on Dawn of Giants.


About the BioBricks Foundation

The BioBricks Foundation (BBF) is a 501(c)(3) public-benefit organization founded in 2006 by scientists and engineers who recognized that synthetic biology had the potential to produce big impacts on people and the planet and who wanted to ensure that this emerging field would serve the public interest.

Our mission is to ensure that the engineering of biology is conducted in an open and ethical manner to benefit all people and the planet.

We envision a world in which scientists and engineers work together using freely available standardized biological parts that are safe, ethical, cost effective and publicly accessible to create solutions to the problems facing humanity.

We envision synthetic biology as a force for good in the world. We see a future in which architecture, medicine, environmental remediation, agriculture, and other fields use synthetic biology.

We believe biosecurity, biosafety, bioethics, environmental health, and sustainability must be integrated with scientific research and applied technology.

We bring together engineers, scientists, attorneys, innovators, teachers, students, policymakers, and ordinary citizens to make this vision a reality.

Decoding Synthetic Biology on KQED’s “Quest”


Video Info:

Uploaded on Jul 22, 2009

Imagine living cells acting as memory devices; biofuels brewing from yeast, or a light receptor taken from algae that makes photographs on a plate of bacteria. With the new science of synthetic biology, the goal is to make biology easier to engineer so that new functions can be derived from living systems. Find out the tools that Bay Area synthetic biologists are using and the exciting things they are building.


This summary can also be found at

DARPA and Transhumanism – Biology is Technology

This is an article by Peter Rothman at H+ Magazine called Biology is Technology — DARPA is Back in the Game With A Big Vision and It Is H+.  DARPA, the world’s most technologically advanced organization is pursuing transhuman technologies and supporting the transhumanism/singularity movement.  Just a thought to keep in mind while reading this; DARPA doesn’t do science fiction…


Biology is Technology — DARPA is Back in the Game With A Big Vision and It Is H+

Peter Rothman


DARPA, the Defense Research Projects Agency, is perhaps best known for its role as progenitors of the computer networking and the Internet. Formed in the wake of the Soviet Union’s surprise launch of Sputnik, DARPA’s objective was to ensure that the United States would avoid technological surprises in the future. This role was later expanded to causing technological surprises as well.

And although DARPA is and has been the leading source of funding for artificial intelligence and a number of other transhumanist projects, they’ve been missing in action for a while. Nothing DARPA has worked on since seems to have had the societal impact of the invention of the Internet. But that is about to change.

The current director of DARPA is Dr. Arati Prabhakar. She is the second female director of the organization, following the previous and controversial director Regina Dugan who left the government to work at Google. The return to big visions and big adventures was apparent and in stark contrast to Dugan’s leadership of the organization.

Quoted in WIRED, Dugan had, for example, stated that “There is a time and a place for daydreaming. But it is not at DARPA,” and she told a congressional panel in March 2011, “Darpa is not the place of dreamlike musings or fantasies, not a place for self-indulging in wishes and hopes. DARPA is a place of doing.”

Those days are gone. DARPA’s new vision is simply to revolutionize the human situation and it is fully transhumanist in its approach.

The Biological Technologies Office or BTO was announced with little fanfare in the spring of 2014. This announcement didn’t get that much attention, perhaps because the press release announcing the BTO was published on April Fool’s Day.

But DARPA is determined to turn that around, and to help make that happen, they held a two day event in the SIlicon Valley area to facilitate and communicate about radical changes ahead in the area of biotechnologies. Invitees included some of the top biotechnology scientists in the world. And the audience was a mixed group of scientists, engineers, inventors, investors, futurists, along with a handful of government contractors and military personnel.

Biology is Technology

I was lucky to be invited to this event because although I spend a large amount of time researching technology and science as related to the future, nothing prepared me for the scope of the DARPA vision. The ostensible purpose of the two day meeting was to introduce the DARPA Biotechnology Program Office and to connect program managers with innovators, investors, and scientists working in biotechnology and related disciplines. But really they were here to shake things up.

darpa bit01

Opening the Biology Is Technology (BiT) event was DARPA Director Dr. Arati Prabhakar. Dr. Prabhakar’s presence at this meeting demonstrates how serious DARPA is about this effort, and one imagines that she was also in California to support President Obama’s Cybersecurity Summit with top leaders of the computer industry.

Dr. Prabhakar interviewed GE’s Sue Siegel about innovation and GE’s role in creating the future. This was a freewheeling conversation in which Ms. Siegel turned the tables and interviewed Dr. Prabhakar instead. What followed was an outstanding introduction to the proactionary approach to research and development, or in DARPA’s language, preventing surprises by creating your own.

Dr. Prabhakar clearly set up the DARPA’s latest incarnation as a return to the big vision, swing for the fences approach. She discussed DARPA’s approach to managing risks while creating high impact technologies. In this vision, DARPA’s role is to help scientists and innovators to “remove early risk” which might prevent them from obtaining investment and bringing novel ideas to market. DARPA was described by one presenter as a “always friendly, but somewhat crazy rich uncle” and they made it clear that they were going to put a fair bit of money behind these ideas.

darpa bit04

This meeting was focused around the launch of the new program office, the Biotechnology Program Office, although other program managers were present. The BTO is headed Dr. Geoff Ling who is a practicing Army medical doctor. Dr. Ling is an energetic spokesman for the DARPA vision and the BTO. And it is notable that it is an M.D. that is in charge of this effort because many of the developments being undertaken by the BTO are simply going to revolutionize the practice of medicine as we know it today. With the energetic Dr. Ling in charge, you can imagine it getting done.

Dr. Ling portrayed DARPA’s ambitious goals and set out what was one of the clearest presentations of the proactionary principle which I have heard. But that was just the opening volley; DARPA is going full on H+.

Following the inspirational presentation by Dr. Ling, the individual program managers had a chance to present their projects.

The first Program Manager to present, Phillip Alvelda, opened the event with his mind blowing project to develop a working “cortical modem”. What is a cortical modem you ask? Quite simply it is a direct neural interface that will allow for the visual display of information without the use of glasses or goggles. I was largely at this event to learn about this project and I wasn’t disappointed.

Leveraging the work of Karl Deisseroth in the area of optogenetics, the cortical modem project aims to build a low cost neural interface based display device. The short term goal of the project is the development of a device about the size of two stacked nickels with a cost of goods on the order of $10 which would enable a simple visual display via a direct interface to the visual cortex with the visual fidelity of something like an early LED digital clock.

The implications of this project are astounding.

Consider a more advanced version of the device capable of high fidelity visual display. First, this technology could be used to restore sensory function to individuals who simply can’t be treated with current approaches. Second, the device could replace all virtual reality and augmented reality displays. Bypassing the visual sensory system entirely, a cortical modem can directly display into the visual cortex enabling a sort of virtual overlay on the real world. Moreover, the optogenetics approach allows both reading and writing of information. So we can imagine at least a device in which virtual objects appear well integrated into our perceived world. Beyond this, a working cortical modem would enable electronic telepathy and telekinesis. The cortical modem is a real world version of the science fiction neural interfaces envisioned by writers such as William Gibson and more recently Ramez Naam.

To the extent that it is real, the cortical modem is still a crude device. This isn’t going to give you a high fidelity augmented reality display soon. And since the current approach is based in optogenetics, it requires a  genetic alteration of the DNA in your neurons. The health implications are unknown, and this research is currently limited to work with animal models. Specifically discussed was a real time imaging of the zebrafish brain with about 85,000 neurons.

Notably, while i was live blogging the event one h+ Magazine reader volunteered to undergo this possibly dangerous genetic procedure in exchange for early access to a cortical modem. A fact which I later got to mention directly to Dr. Prabhakar at the reception afterwards.

darpa bit18

Following the astounding cortical modem presentation, Dr. Dan Wattendorf presented DARPA’s efforts to get in front of and prevent disease outbreaks such as the recent crisis with ebola in Africa. This was a repeated theme throughout the event. DARPA is clearly recognizing the need to avoid “technological surprises” from nature as well as from nations. It is widely recognized that the current technology for dealing with novel disease outbreaks, the so called “post antibiotic” era, and bioweapons requires entirely new strategies for detection and rapid response to communicable illnesses. As an example, the ebola vaccine currently being considered for use has been in development for decades. Moreover, only a small number of vaccines exists even for known diseases. A novel threat might provide only weeks or months to respond however. Clearly new approaches are needed in both detection of disease outbreaks and response to them. Perhaps most interesting to me here was the discussion of transient gene therapies where an intervention that alters an organism’s DNA but which “turn off” after some time period or event.

Dr. Jack Newman Chief Science Officer at Amyris and board member of the Biobricks Foundation followed. Jack has recently joined DARPA as a program manager himself and he talked about Amyris’ work with producing useful materials from bio-engineered yeast. This project funded under DARPA’s Living Foundries program is just one of a number of efforts seeking to create novel materials and production processes. Dr. Newman presented a view into the programming of living systems using Amyris software that was quite interesting.

This provided a natural segue to program manager Alicia Jackson’s presentation on the broader Living Foundries program which promises to leverage the synthetic and functional capabilities of biology to create biologically-based manufacturing platforms to provide access to new materials, capabilities and manufacturing paradigms based in biology and synthetic biology. Imagine materials that self assemble, heal, and adapt to their changing environment as biological systems do. The program currently focuses on compressing the biological design-build-test-learn cycle by at least 10 times in both time and cost, while simultaneously increasing the complexity of systems that are created. The second phase of the program builds on these advancements and tools to create a scalable, integrated, rapid design and prototyping infrastructure for the engineering of biology.

Following this, a more casual presentation, a “fireside” chat between famed geneticist Dr. George Church and technology historian George Dyson. This chat rambled a bit and started off slowly. But once it got going, Church laid out his vision of engineering ecosystems using “gene drives” and throughout a variety of remarks that were of interest. For example, he expressed skepticism about “longevity” research as compared with “age reversal” techniques. GDF 11 got a mention. He also discussed the observation of genetic changes in cells grown outside of the body for example in so called “printed” organs, and discussed his alternative approach of growing human donor organs in transgenic pigs. He suggested the real possibility of enhancing human intelligence through genetic techniques and pointed to the complete molecular description of living systems as a goal.

This led into another amazing presentation from new DARPA program manager Julian Sanchez who is leading DARPA’s Human-machine symbiosis group which is developing many of the groundbreaking prosthetics such as mind controlled limbs which have recently been in the news. DARPA’s investment in advanced limb prosthetics has already delivered an FDA-approved device but “cognitive prosthetics” are next. DARPA is developing hardware and software to overcome the memory deficits and neuropsychiatric illnesses afflicting returning veterans for example.

Screen Shot 2015-02-13 at 9.56.11 AM

While there wasn’t much shown regarding applying these ideas to healthy individuals or combat systems, we can assume that this work is underway. One patient was shown employing a neural interface to fly a simulated aircraft for example. And DARPA is supposedly working towards a system that would allow one person to pilot multiple vehicles by thought alone. The approach is bigger than just thought controlled drones however, because it focuses on creating symbiosis which is to ensure a mutual benefit to both partners in a relationship. The potential of this idea is often overlooked and misunderstood in conversations about machine intelligence for example.

Together with the cortical modem, these devices promise to revolutionize human abilities to repair ourselves, extend ourselves, communicate and indeed they will eventually and inevitably alter what it means to be human. Where is the boundary between self and other if we can directly share thoughts, dreams, emotions, and ideas? When we can experience not only the thoughts but feelings of someone else? How will direct neural access to knowledge change education and work? These technologies raise many questions for which we do not yet have answers.

Dr. Sanchez closed by calling on members of the audience to “come to DARPA and change the world” a call which didn’t ring hollow by this point. And things were just getting started.

This statement was made repeatedly. DARPA is open for business and looking for collaborators to work with. They’re building teams that work across subjects, disciplines and communities. They seek to build a community of interest aimed at tackling some of mankind’s greatest challenges, including things like curing communicable diseases and reversing ecosystem collapse. DARPA has some unique instruments and capabilities to offer anyone developing radical technological ideas and they want you to know about them. They openly invited the audience to submit abstracts for research ideas and promised that every email they receive would be answered “at least once”.

Several different DARPA performers also gave presentations. These are the people that DARPA has hired under contract to actually do the work and the presentations were a pretty heady and eclectic mix ranging from deep science to the unusual and on to the profound. Dr.Michel M. Maharbiz of UC Berkeley who is developing “neural dust” and has done controversial work with insect cyborgs. Saul Griffith of Otherlab presented the farthest ranging talk including his work with computer controlled inflatables which includes development of exoskeleton concepts, pneumatic sun trackers for low cost solar power applications, and a life sized robotic inflatable elephant he made for his daughter. I was also intrigued by a toy they had designed that was a universal constructor. He also had some very interesting analysis of the world’s energy production and utilization, showing areas where DARPA (and anyone else interested) could make the biggest difference to slow climate change.

How about curing all known and even unknown communicable diseases? Exploring “post pathogen medicine” is an effort in which DARPA is working to identify “unlikely heros”, those individuals with surprising  resilience or resistance to dangerous diseases. The idea is to apply big data analytics to analyze data from a large number of existing scientific analyses that might hide data indicating genetic markers for immunity or disease resistance in individuals.

Karl Deisseroth presented his work with optogenetics and his newer techniques for transforming neural tissue into a clear gel that can be imaged. He presented some impressive images from this work and his new unpublished imaging technique called “Swift 3D”. The resulting images are real-time maps of neural events. For example, Dr. Deisseroth presented visual representations of mouse thoughts from one controlled experiment.

Beyond reading mids, DARPA’s BiT programs are also looking to revolutionize the practice of biology and science in general. Dr. Stephen Friend presented Sage Networks a science oriented social sharing and collaboration platform which radically realigns the practices of scientific publication and data sharing. Apart from providing a standardized platform for publishing annotated bioscience datasets, the system requires users to make their data available to other researchers while still preserving their ability to get credit for original ideas and work. This project is important and could see application elsewhere outside of the biosciences. One member of the audience was so impressed with this idea she was compelled to comment.

darpa bit38

More directly, DARPA seeks to revolutionize the day to day practice of biotechnology and drug development. A series of “organs on a chip” was presented. These devices allow cultures of cells from an individual’s organs to be grown and treated with medications to assess effectiveness and possible side effects without the need to use an animal model or test on a live human subject. While they haven’t replicated every human organ, they did have a “gut on a chip” shown here. These little chips are flexible and kind of artistic actually. The company Emulate had a representative explaining the technology at the reception after the first day of the event. This is just one of several projects in which DARPA is seeking to understand the effects of drugs including adverse side effects in novel ways. The eventual hope is to shorten time to market while also radically lowering the costs of new medications.

Microfluidics — making tiny droplets

Another impressive series of developments was presented in the area of microfluidics. These developments consist of a set of technologies for creating very small droplets, and various mechanisms for manipulating, and experimenting on these tiny drops. Currently the practice of bioscience experimentation is largely performed by human postdocs who spend thousands of hours pipetting, mixing, and carefully measuring results. But using microfluidics and a series of intricate valves, nozzles, and so on, many of these procedures can be automated and radically sped up.

The audience got a chance to mix with the DARPA program managers after the event at a reception where some of DARPA’s projects were presented in a hands on environment. I had a brief conversation with Dr. Prabhakar who mentioned that she was aware of Humanity+ and transhumanism more generally. She was excited to have us involved, but also expressed some dismay at the political aspect of the transhumanist movement.

Well known Silicon Valley venture capitalist, rocketeer, transhumanist, and super guy Steve Jurvetson was spotted “high fiving” a DARPA funded telepresence robot developed at Johns Hopkins APL at the reception.

The robot operates via a head mounted display which places the wearer into the robot’s “head” and two instrumented gloves which give the wearer control over the robot’s dexterous human like hands. The hands get a bit hot due to the motors that move them however, so a fist bump is going to be prefered over a handshake with this guy.

darpa bit28 darpa bit32 darpa bit34

DARPA’s Inner Buddha

a photo of a child holding hands with a prosthetic hand

AT the two day BiT event, it was revealed that DARPA hasn’t just gone full on transhumanist, they’re full Buddha.

The goal of his project as presented by one of the project investigators, Dr. Eddie Chang of the University of California at San Francisco, during day two’s “Lightning Round” , was nothing less than eliminating human suffering.

Curing communicable diseases and prosthetics were the top of the list day one.

But Dr. Chang was talking about curing a deeper inner injury, the sort of thing that causes mental illness, depression, and intractable PTSD;  problems which military veterans notably suffer disproportionately.

The first stage of the project is underway and working with patients who are already undergoing brain surgery for intractable epilepsy. Four individuals so far have had their detailed neural patterns recorded 24 hours a day for ten days using an implanted device. The resulting neural map is at the millimeter and millisecond level and is correlated with other information about the patient’s mood and physiological state.

In another program, ElectRX, DARPA is investigating the use of similar neural stimulation techniques to promote healing of the body from injuries and disease. In both cases the emphasis isn’t  on working around or bypassing damage, but using electrical stimulation to promote healing and repair. DARPA wants to heal you. Dr. Chang stated, for example, that the success of his project wouldn’t be marked by the date of the first implanted device, but rather the date of the first removal.


Creating novel industrial processes to reduce climate change? DARPA had that covered too. So while Dr. Ling made sure to remind the audience up front that this was all about supporting warfighters, it was impossible to not consider the deeper implications of what was being presented as the event proceeeded.

The reality is that the true DARPA mission isn’t just about war. A happier, more secure and sustainable world is the best possible security for the United States, a fact that DARPA’s leaders seemingly recognize at the moment.  And so DARPA is developing technologies for rapid identification of communicable diseases, restoring lost biological functions, producing materials and developing novel industrial processes to prevent slow and reverse climate change, save ecosystems and more.

And DARPA’s next revolution, biology is technology, is something even bigger than the Internet. They’re out to revolutionize the practice and products of bio-science and along the way they are re-defining what it will mean to be human. Will we alter our biology to enable direct mind to mind communication? Can we extend our immune system into the world to cure all communicable diseases? Can we cure and repair the most damaging and persistent mental illnesses?

In this amazing two day event, DARPA opened the door to a wider public collaboration and conversation about these amazing ideas.

A second event is planned for New York City in June and video of the February presentations will be available online according to DARPA representatives at the event. I will update this story with videos when they are available.

This article can also be found at

Transhumanism and Religion by John G. Messerly

Here is an excellent, bite-sized article from John G. Messerly on the IEET website called simply Transhumanism and Religion.  In the article, Messerly presents a case for why he considers religion to be premature transhumanism.  


Transhumanism and Religion


By John G. Messerly
The Meaning of Life

Transhumanism is: The intellectual and cultural movement that affirms the possibility and desirability of fundamentally improving the human condition through applied reason, especially by developing and making widely available technologies to eliminate aging and to greatly enhance human intellectual, physical, and psychological capacities … transhumanism is a way of thinking about the future that is based on the premise that the human species in its current form does not represent the end of our development but rather a comparatively early phase.1<sup< p=””>

Transhumanism appears to have nothing in common with religion, defined as: “the belief in and worship of a god or gods, or any such system of belief and worship…”In transhumanism the gods play no role.

Yet the two are not entirely dissimilar. Religious people generally want to overcome the limitations of the body and live forever, just like transhumanists. Arising before transhumanist ideas were conceivable, religions had no other option but to advise their followers to accept death and hope for the best. Religious beliefs provided comfort in the face of death and natural evils before the advent of science and technology. We might think of religion as premature transhumanism. Religion is not the opposite of transhumanism but a seed from which transhumanism can grow.

However today the comfort provided by archaic religious superstitions impedes advancement and therefore should be set aside. We need to grow beyond religion. But must we relinquish religious beliefs now, before science gives us everything we want? Yes. The most important reason to abandon religious belief is religion’s opposition to most forms of progress. For the most part religion has opposed: the elimination of slavery, the use of birth control, women’s and civil rights, stem cell research, genetic engineering, and science in general. Religion is from our past; it opposes the future.

Can humans function without the old religious narratives? They can, they just need new narratives based on a scientific worldview. Such narratives could be transhumanist, of humans playing their role as links in a chain leading to greater forms of being and consciousness; or perhaps they will focus on the idea that cosmic evolution is the story of the universe becoming self-conscious through conscious beings like ourselves. Whatever shape those narratives take, they must be informed by the belief that humans can evolve into something much more than they are now.

But against this seemingly infinite temporal background, what of the significance of a single, finite human life, and what is the significance of all of cosmic evolution? We are significant if we play our part in advancing evolution, if we accept our role as the protagonists of the evolutionary epic. And if we succeed our post-human descendants will understand these ultimate questions, giving our own lives—by then long past—a significance we can now hardly fathom. For the moment we must take solace in the hope that the better world we imagine is indeed possible.

1. This quote is from the Humanity+ website’s FAQ section.

2. From “The Cambridge International Dictionary of English.”

Having introduced transhumanists ideas to university students over the years, I am familiar with typical objections to transhumanist philosophy: if we don’t die the world will become overpopulated; not having a body would be yucky; this is all science fiction; lots of things can go wrong; technology is bad; death makes life meaningful; immortality would be boring; etc.

So I was surprised after yesterday’s post to receive hostile responses of the “we shouldn’t play god,” or “we should let nature take its course” variety. You can find similar critiques at links like : “The Catholic Church Declares War on Transhumanism”  and “Transhumanism: Mankind’s Greatest Threat.” Here is a statement from the latter:

Various organizations desire to use emerging technology to create a human species so enhanced that they cease to be humans. They will be post-humans with the potential of living forever. If these sciences are not closely monitored and regulated, transhumanists’ arrogant quest to create a post-human species will become a direct assault on human dignity and an attack on God’s sovereignty as Creator. We must decide on an unmovable line now, one that upholds human dignity based on Biblical Truth.

It is no longer enough to be pro-life; we have now entered a time when we must be pro-human. Education about the full implications of these emerging sciences is a key to be able to directly confront these assaults on humanity.

If one truly believes that humans should accept their fate, that they were specially designed and created by the gods, and that the divine plans includes evil and death, then the condemnations of transhumanism are justified. But will this opposition succeed? I doubt it. Most do not desire to go back to the middle ages, when believers prayed sincerely and then died miserably.

Today some still consult faith healers, but the intelligent go to their physicians. Everything about technology plays god, and letting nature takes its course means that half the people reading this article would have died in childbirth or from childhood diseases before the advent of modern medicine.

Still there are good reasons to be cautious about designing and using future technologies, as Bill Joy outlined more than a decade ago in “Why The Future Doesn’t Need Us.”  (Here is my published criticism of Joy’s argument.) Yes, we should be cautious about the future, but we should not stand still.

​Do we really want to turn the clock back 100 years before computers and modern medicine? Do we really want to freeze technology at its current level? Look before we leap, certainly, but leap we must. If we do nothing, eventually we will go extinct: asteroids will hit the planet, the climate will change irrevocably, bacteria will evolve uncontrollably, and in the far future the sun will burn out. Only advanced technologies give us a chance against such forces.

If we do nothing we will die; if we gain more knowledge and the power that accompanies it, we have a chance. With no risk-free way to proceed, we should be brave and bold, unafraid to guide our own destiny.

Perhaps the best way to illuminate the choice is to consider a previous choice human beings faced in their history. What should they do about disease? Should they pray to the gods and have faith that the gods will cure them, or should they use science and technology to find the cures themselves? In hindsight the answer is clear. Praying to the gods makes no difference, whereas using modern medicine has limited death and disease, and nearly doubled the human lifespan in the last century.

When medieval Europeans contracted the plague they prayed hard … and then died miserably. Other examples also easily come to mind. What is the best way to predict weather, harness energy, capture sound, achieve flight, communicate over great distances, or fly to far off planets? In none of these cases is doing nothing and hoping for the best a good bet. All of the above were achieved through the use of science and technology.

These examples highlight another advantage to making the transhumanist wager—the incremental benefits that accrue as we live longer and better lives as we approach the holy grail of a blissful immortality. Such benefits provide assurance that we are on the right path, which should increase our confidence that we are making the correct wager. In fact, the benefits already bestowed upon us by science and technology in the past confirm that it is the best path toward a better future. (Half the readers of this essay would have died from a childhood disease just a century ago.) As these benefits accumulate, and as we become aware of them, our existence will become increasingly indistinguishable from the most enchanting descriptions of any afterlife.

So we should throw off archaic superstitions and use our technology? Yes Will we do this? Yes. I can say with confidence that when an effective pill that stops or reverses aging becomes available at your local pharmacy—it will be popular. Or if, as you approach death, you are offered the opportunity to have your intact consciousness transferred to your younger cloned body, a genetically engineered body, a robotic body, or a virtual reality, most will use such technologies when they have been shown to be effective. By then almost everyone will prefer the real thing to a leap of faith. At that point there will be no need to make a transhumanist wager. The transhumanist will already have won the be

However at the moment the above is science fiction and subject to trillions of variables. Contingent factors beyond our imagination will lead to some unimaginable future, or no future at all. Thus evolutionary progress is not inevitable, and in no way do our views entail technological optimism—technology can be used for good or ill.

But even if our technology can lead to a glorious future, it could be halted by terrestrial or celestial disasters, or by dogmatists, zealots, religious fanatics, and others who oppose progress. The opponents may have legitimate fears about the repercussions of future technologies, but they may also be guided by ignorance and irrationality.

They may long for a past paradise, fear what they don’t understand, believe they possess a monopoly on the truth, or think humans subservient to super beings. But for whatever reasons they oppose change, preferring stasis and stagnation to dynamic, progressive evolutionism. They prefer to prevent the groundswell of initiative, creativity, inventiveness, perseverance, and hope that drive evolution forward. They are fearful that the new world will render them and their beliefs, anachronistic. They are the enemies of the future.

But if the surge of cosmic longing presses forward, then higher forms of being and consciousness will emerge, and the universe will become increasingly self-consciousness. This is the story of cosmic evolution, of a universe becoming self-conscious through the creation of conscious beings. Humans are not an end, but a beginning. They need not fear imaginary gods, but need instead to have the courage to create minds more powerful than the gods. Let the dark ages not again descend upon us—let our most fantastic longings be realized. Let us have faith in the future.

John G. Messerly is an Affiliate Scholar of the IEET. He received his PhD in philosophy from St. Louis University in 1992. His most recent book is The Meaning of Life: Religious, Philosophical, Scientific, and Transhumanist Perspectives. He blogs daily on issues of philosophy, evolution, futurism and the meaning of life at his website:

This article can also be found at