Ben Goertzel – Beginnings [on Artificial Intelligence – Thanks to Adam A. Ford for this video.]

In this video, Ben Goertzel talks a little about how he got into AGI research and about the research, itself.  I first heard of Ben Goertzel about four years ago, right when I was first studying computer science and considering a career in AI programming.  At the time, I was trying to imagine how you would build an emotionally intelligent machine.  I really enjoyed hearing some of his ideas at the time and still do.  Also at the time, I was listening to a lot of Tony Robbins so you could imagine, I came up with some pretty interesting theories on artificial intelligence and empathetic machines.  Maybe if I get enough requests I’ll write a special post on some of those ideas.  You just let me know if you’re interested.

Runtime: 10:33

This video can also be found at here and here.

Video Info:

Published on Jul 27, 2012

Ben Goertzel talks about his early stages in thinking about AI, and two books : The Hidden Pattern, and Building Better Minds.

The interview was done in Melbourne Australia while Ben was down to speak at the Singularity Summit Australia 2011.

Interviewed, Filmed & Edited by Adam A. Ford


Why neuroinformatics? from the International Neuroinformatics Coordinating Facility

Here is a short introduction to neuroinformatics.  The video is called Why neuroinformatics? and it briefly lays out the mission of the International Neuroinformatics Coordinating Facility (INCF).


Runtime: 3:18

This video can also be found at

Video Info:

Published on Nov 10, 2013

Why does neuroscience need neuroinformatics? Watch this 3 min video to find out!

The mission of the International Neuroinformatics Coordinating Facility (INCF) is to facilitate the work of neuroscientists around the world, and to catalyze and coordinate the global development of neuroinformatics.

Thank you to all featured community members for collaborating with our team in making this video!

Special thanks to:
– The Neuroscience department at the Karolinska Institute, Stockholm, Sweden.
– The PDC Center for High-Performance Computing at the KTH Royal Institute of Technology, Stockholm, Sweden.
– The Neurological X-ray Clinic at the Karolinska University Hospital, Stockholm, Sweden.

Production company: Vimago (

About INCF
The International Neuroinformatics Coordinating Facility (INCF), together with its 17 member countries, coordinates collaborative informatics infrastructure for neuroscience data integration and manages scientific programs to develop standards for data sharing, analysis, modeling and simulation in order to catalyze insights into brain function in health and disease.

For press inquiries about INCF please contact:


FET Flagships: Definition and Examples from the Digital Agenda for Europe

This webpage (found at the Digital Agenda for Europe website) explains FET Flagships and two top flagship topics.  They are multidisciplinary approaches to unlocking technologies which have the potential to radically change the future of humanity.  The two flagship topics covered (in embedded videos) are Graphene and the Human Brain Project.


FET Flagships

The Future & Emerging Technologies (“FET”) Flagships are visionary, large-scale, science-driven research initiatives which tackle scientific and technological challenges across scientific disciplines.

The Future and Emerging Technologies (FET) Flagships were developed over a two-and-a-half year preparatory phase. They will have a transformational impact on science, technology and society overall. They foster coordinated efforts between the EU and its Member States’ national and regional programmes. Highly ambitious, they rely on cooperation among a range of disciplines, communities and programmes, requiring sustained support up to 10 years.

Two projects were selected as winners among the pilot flagship topics:
Graphene and the
Human Brain Project.

The European Commission published in September 2014 the FET Flagship Staff Working document, announcing the implementation model for the Flagships in H2020. Read the overview and presentation.


Graphene Logo

Graphene investigates and exploits the unique properties of a revolutionary carbon-based material. It possesses an extraordinary combination of physical and technical properties:  it is the thinnest material, it conducts electricity,  it is stronger than steele and entails unique optical properties.

To better understand Graphene, check out the following:

  • New Graphene video:How Chalmers University manufactures scalable and high-performing solid Graphene samples, the raw material used by the over 100 research groups within the Graphene Flagship.
  • Follow @GrapheneCA on Twitter
  • Programme launch event (Oct2013 – Göteborg (SE))

The Human Brain Project

The Human Brain Project logo

Understanding the human brain is one of the greatest challenges facing 21st century science. Using a unique simulation-based approach, the Human Brain Project aims to provide researchers worldwide with a tool to understand how the human brain really works. If we rise to the challenge, this initiative will revolutionise the future of neuroscience, medicine, and computing.

To better understand HPB, several resources are available:

  • The Human Brain Project Youtube Video Channel – check out video guides on various aspects of the project: Neuromorphic Computing, Future Medicin, Future Neuroscience , Future Computing, Ethics & Society, Neuroinformatics, Medical Informatics Platforms, High Performance Computing, Brain Stimulation Platform, Neurobotics, Mathematical and Theoretical Foundations of Brain Research;
  • Follow @HumanBrainProj on Twitter;
  • Programme launch event (Oct2013 – Lausanne (CH))



The ERA-NET, called FLAG-ERA, gathers ministries and most funding organisations in Europe, participating either directly or as associated members, with the goal of supporting the FET Flagship initiatives ‘Graphene’ and ‘The Human Brain Project’ and more generally the FET Flagship concept.

FLAG-ERA offers a platform to coordinate a wide range of sources of funding towards the realization of the very ambitious research goals of the two Flagship initiatives. The funding organisation will coordinate their funding framework conditions, adapt their thematic programs and elaborate new joint support mechanisms according to the identified needs. In particular, they can launch transnational calls enabling researchers from different countries to propose joint contributions to the Flagships.

FLAG-ERA also offers support to the four non-selected “runner-ups” Flagship pilots to progress towards their goals with adapted means.

  • FuturICT – understanding and managing complex, global, socially interactive systems, with a focus on sustainability and resilience.
  • Guardian Angels – technologies for extremely energy-efficient, smart, electronic personal companions that will assist humans from infancy to old age.
  • IT Future of Medicine – a data-driven, individualised medicine of the future, based on the molecular, physiological, and anatomical data from individual patients.
  • RoboCom – Robot Companions for Citizens.

FET Flagship background

A call was published in July 2010, and six pilot projects were chosen for the so-called preparatory actions. At the end of 2012, 25 world-renowned experts evaluated the pilots’ work and two winning projects were announced by Vice-President Neelie Kroes on 28th January 2013.

This article can also be found here.

The first video can also be found here.

The second video can also be found here.

Video Info:

Video 1:

Published on Jan 28, 2013

“Graphene” will investigate and exploit the unique properties of a revolutionary carbon-based material. Graphene is an extraordinary combination of physical and chemical properties: it is the thinnest material, it conducts electricity much better than copper, it is 100-300 times stronger than steel and it has unique optical properties. The use of graphene was made possible by European scientists in 2004, and the substance is set to become the wonder material of the 21st century, as plastics were to the 20th century, including by replacing silicon in ICT products.

Video 2:

Published on Jan 28, 2013

The “Human Brain Project” will create the world’s largest experimental facility for developing the most detailed model of the brain, for studying how the human brain works and ultimately to develop personalised treatment of neurological and related diseases. This research lays the scientific and technical foundations for medical progress that has the potential to will dramatically improve the quality of life for millions of Europeans.


Using Pattern Recognition to Enhance Memory and Creativity and The Ravenous Brain by Daniel Bor

Here’s an article I found on The Atlantic website called Using Pattern Recognition to Enhance Memory and Creativity.  The article is inspired by the book, The Ravenous Brian, by author and neuroscientist, Daniel Bor which I just purchased.  I’ll make sure to review it here at Dawn of Giants when I am done reading it.  In the meantime, this article is definitely worth reading.  It reminds me of advice often given by success coach, Tony Robbins – “Chunk it down!”


Using Pattern Recognition to Enhance Memory and Creativity

“If seven friends in turn rapidly told him their phone numbers, he could calmly wait until the last digit was spoken and then, from memory, key all seven friends’ numbers into his phone’s contact list without error.”

ravenousbrain.jpgIt seems to be the season for fascinating meditations on consciousness, exploring such questions as what happens while we sleep, how complex cognition evolved, and why the world exists. Joining them and prior explorations of what it means to be human is The Ravenous Brain: How the New Science of Consciousness Explains Our Insatiable Search for Meaning (public library) by Cambridge neuroscientist Daniel Bor in which, among other things, he sheds light on how our species’ penchant for pattern-recognition is essential to consciousness and our entire experience of life.

The process of combining more primitive pieces of information to create something more meaningful is a crucial aspect both of learning and of consciousness and is one of the defining features of human experience. Once we have reached adulthood, we have decades of intensive learning behind us, where the discovery of thousands of useful combinations of features, as well as combinations of combinations and so on, has collectively generated an amazingly rich, hierarchical model of the world. Inside us is also written a multitude of mini strategies about how to direct our attention in order to maximize further learning. We can allow our attention to roam anywhere around us and glean interesting new clues about any facet of our local environment, to compare and potentially add to our extensive internal model.

Much of this capacity relies on our working memory — the temporary storage that holds these primitive pieces of information in order to make them available for further processing — and yet what’s most striking about our ability to build such an “amazingly rich” model of the world is that the limit of our working memory is hardly different from that of a monkey, even though the monkey’s brain is roughly one-fifteenth the size of ours: Experiment after experiment has shown that, on average, the human brain can hold 4 different items in its working memory, compared to 3 or 4 for the monkey.

What makes the difference, Bor argues, is a concept called chunking, which allows us to hack the limits of our working memory — a kind of cognitive compression mechanism wherein we parse information into chunks that are more memorable and easier to process than the seemingly random bits of which they’re composed. Bor explains:

In terms of grand purpose, chunking can be seen as a similar mechanism to attention: Both processes are concerned with compressing an unwieldy dataset into those small nuggets of meaning that are particularly salient. But while chunking is a marvelous complement to attention, chunking diverges from its counterpart in focusing on the compression of conscious data according to its inherent structure or the way it relates to our preexisting memories.

To illustrate the power of chunking, Bor gives an astounding example of how one man was able to use this mental mechanism in greatly expanding the capacity of his working memory. The man, an undergraduate volunteer in a psychology experiment with an average IQ and memory capacity, took part in a simple experiment, in which the researchers read to him a sequence of random digits and asked him to say the digits back in the order he’d heard them. If he was correct, the next trial sequence would be one digit longer; if incorrect, one digit shorter. This standard test for verbal working memory had one twist — it took place over two years, where the young man did this task for an hour a day four days a week.

Initially, he was able to remember roughly seven numbers in the sequence — an average improvement over the four-item limit that most people arrive at with a few simple and intuitive rehearsal strategies. But the young man was so bored with the experiment he decided to make it interesting for himself by doing his best to greatly improve his limit — which he did. By the end, some 20 months later, he was able to say back a sequence that was 80 digits long — or, as Bor puts it, “if seven friends in turn rapidly told him their phone numbers, he could calmly wait until the last digit was spoken and then, from memory, key all seven friends’ numbers into his phone’s contact list without error,” an achievement that would make Joshua Foer proud.

But how, exactly, was an average person capable of such a superhuman feat? Bor sheds light:

This volunteer happened to be a keen track runner, and so his first thought was to see certain number groups as running times, for instance, 3492 would be transformed into 3 minutes and 49.2 seconds, around the world-record time for running the mile. In other words, he was using his memory for well-known number sequences in athletics to prop up his working memory. This strategy worked very well, and he rapidly more than doubled his working memory capacity to nearly 20 digits. The next breakthrough some months later occurred when he realized he could combine each running time into a superstructure of 3 or 4 running times — and then group these superstructures together again. Interestingly, the number of holders he used never went above his initial capacity of just a handful of items. He just learned to cram more and more into each item in a pyramidal way, with digits linked together in 3s or 4s, and then those triplets or quadruplets of digits linked together as well in groups of 3, and so on. One item-space, one objet in working memory, started holding a single digit, but after 20 months of practice, could contain as much as 24 digits.

This young man had, essentially, mastered exponential chunking. But, Bor points out, chunking isn’t useful only in helping us excel at seemingly meaningless tasks — it is integral to what makes us human:

Although [chunking] can vastly increase the practical limits of working memory, it is not merely a faithful servant of working memory — instead it is the secret master of this online store, and the main purpose of consciousness.


There are three straightforward sides to the chunking process — the search for chunks, the noticing and memorizing of those chunks, and the use of the chunks we’ve already built up. The main purpose of consciousness is to search for and discover these structured chunks of information within working memory, so that they can then be used efficiently and automatically, with minimal further input from consciousness.

Perhaps what most distinguishes us humans from the rest of the animal kingdom is our ravenous desire to find structure in the information we pick up in the world. We cannot help actively searching for patterns — any hook in the data that will aid our performance and understanding. We constantly look for regularities in every facet of our lives, and there are few limits to what we can learn and improve on as we make these discoveries. We also develop strategies to further help us — strategies that themselves are forms of patterns that assist us in spotting other patterns, with one example being that amateur track runner developing tactics to link digits with running times in various races.

But, echoing Richard Feynman’s eloquent lament on the subject, Bor points to a dark side of this hunger for patterns:

One problematic corollary of this passion for patterns is that we are the most advanced species in how elaborately and extensively we can get things wrong. We often jump to conclusions — for instance, with astrology or religion. We are so keen to search for patterns, and so satisfied when we’ve found them, that we do not typically perform sufficient checks on our apparent insights.

Still, our capacity for pattern-recognition, Bor argues, is the very source of human creativity. In fact, chunking and pattern-recognition offer evidence for the combinatorial nature of creativity, affirm Steve Jobs’s famous words that “creativity is just connecting things”, Mark Twain’s contention that “all ideas are second-hand”, and Nina Paley’s clever demonstration of how everything builds on what came before.

The arts, too, generate their richness and some of their aesthetic appeal from patterns. Music is the most obvious sphere where structures are appealing — little phrases that are repeated, raised a key, or reversed can sound utterly beguiling. This musical beauty directly relates to the mathematical relation between notes and the overall logical regularities formed. Some composers, such as Bach, made this connection relatively explicit, at least in certain pieces, which are just as much mathematical and logical puzzles as beautiful musical works.

But certainly patterns are just as important in the visual arts as in music. Generating interesting connections between disparate subjects is what makes art so fascinating to create and to view, precisely because we are forced to contemplate a new, higher pattern that binds lower ones together.

What is true of creative skill, Bor argues, is also true of our highest intellectual contribution:

Some of our greatest insights can be gleaned from moving up another level and noticing that certain patterns relate to others, which on first blush may appear entirely unconnected — spotting patterns of patterns, say (which is what analogies essentially are).

Best of all, this system expands exponentially as it feeds on itself, like a muscle that grows stronger with each use:

Consciousness and chunking allow us to turn the dull sludge of independent episodes in our lives into a shimmering, dense web, interlinked by all the myriad patterns we spot. It becomes a positive feedback loop, making the detection of new connections even easier, and creates a domain ripe for understanding how things actually work, of reaching that supremely powerful realm of discerning the mechanism of things. At the same time, our memory system becomes far more efficient, effective — and intelligent — than it could ever be without such refined methods to extract useful structure from raw data.

Though some parts of The Ravenous Brain fringe on reductionism, Bor offers a stimulating lens on that always fascinating, often uncomfortable, inevitably alluring intersection of science and philosophy where our understanding of who we are resides.


This post also appears on Brain Pickings, an Atlantic partner site.

This article can also be found here.

NASA and Singularity University

This isn’t an article so much as it is a memo posted on the NASA website.  Basically, the ‘article’ states that NASA supports the Singularity University endeavor.  This is actually kind of old news (from 2009), but part of the mission of Dawn of Giants is to convince people of the need to take transhumanism and the idea of the technological singularity seriously.  Maybe the support of government agencies like NASA and DARPA will help to this end.  

NASA Ames Becomes Home To Newly Launched Singularity University

Rachel Prucey – Ames Research Center, Moffett Field, Calif.

Denise Vardakas – Singularity University, Moffett Field, Calif.

Feb. 03, 2009

MOFFETT FIELD, Calif., — Technology experts and entrepreneurs with a passion for solving humanity’s grand challenges, will soon have a new place to exchange ideas and facilitate the use of rapidly developing technologies.

NASA Ames Research Center today announced an Enhanced Use Lease Agreement with Singularity University (SU) to house a new academic program at Ames’ NASA Research Park. The university will open its doors this June and begin offering a nine-week graduate studies program, as well as three-day chief executive officer-level and 10-day management-level programs. The SU curriculum provides a broad, interdisciplinary exposure to ten fields of study: future studies and forecasting; networks and computing systems; biotechnology and bioinformatics; nanotechnology; medicine, neuroscience and human enhancement; artificial intelligence, robotics, and cognitive computing; energy and ecological systems; space and physical sciences; policy, law and ethics; and finance and entrepreneurship.

“The NASA Ames campus has a proud history of supporting ground-breaking innovation, and Singularity University fits into that tradition,” said S. Pete Worden, Ames Center Director and one of Singularity University’s founders. “We’re proud to help launch this unique graduate university program and are looking forward to the new ideas, technologies and social applications that result.”

Singularity University was founded Sept. 20, 2008 by a group of leaders, including Worden; Ray Kurzweil, author and futurist; Peter Diamandis, space entrepreneur and chairman of the X PRIZE Foundation; Robert Richards, co-founder of the International Space University; Michael Simpson, president of the International Space University; and a group of SU associate founders who have contributed time and capital.

“With its strong focus on interdisciplinary learning, Singularity University is poised to foster the leaders who will create a uniquely creative and productive future world,” said Kurzweil.


NASA Ames would like to eliminate confusion that might have arisen concerning NASA personnel as “Founders” of Singularity University in the Feb. 3, 2009 news release, “NASA Ames Becomes Home To Newly Launched Singularity University.”

NASA Ames Center Director S. Pete Worden hosted SU’s Founders Conference on Sept. 20, 2008 at NASA Ames. On NASA’s behalf he and other Ames personnel provided input to SU’s founders and encouraged the scientific and technical discussions. Neither Dr. Worden nor any other NASA employee is otherwise engaged in the University’s operation nor do any NASA Ames employees have personal or financial interests in Singularity University. As with other educational institutions, NASA employees may support educational activities of SU through lectures, discussions and interactions with students and staff. NASA employees may also attend SU as students.

For more information about Singularity University, visit:

For more information about NASA programs, visit:


This can also be found at